《二次根式的加减》教案设计

时间:2019-05-15 12:22:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《二次根式的加减》教案设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《二次根式的加减》教案设计》。

第一篇:《二次根式的加减》教案设计

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6=13-3(2)(+)(-)=()2-()

2=10-7=

3三、巩固练习

课本P20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

第二篇:二次根式教案设计

二次根式教案设计

一:教学内容分析

本节课是人教版九年级上册第21章二次根式第一节二次根式第一课时的内容,它是前面学习的数的开方的后继学习,也是学习二次根式的运算的基础,他在整个初中阶段起着重要的作用,贯穿始终,为后继学习打下夯实的基础。二:学生情况分析

本节课是在数的开方的有关知识的基础上展开的,有了一定知识基础,并且在勾股定理中有所运用,他们并不陌生,所以只要我们连接好新旧知识,学生很容易接受,加强新旧知识的联系,化为知为已知。

三、教学目标:

1.知识与技能

(1)理解二次根式的概念.(2)二次根式有意义的判定.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出二次根式概念.

(2)再对概念的内涵进行分析,得出二次根式成立的条件,并运用这一条件进行二次根式有意义的判断.

3.情感、态度与价值观

通过本节的学习培养学生:准确归纳概念的科学精神,经过探索二次根式是否有意义,发展学生观察、分析、发现问题的能力.

四、教学重难点

1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点:利用“(a≥0)”解决具体问题.

五、教学方法

启发式教学法

六、教学过程 导入新课(问题导入)

请同学们独立完成下列三个问题: 问题1、7的算术平方根是()。

问题

2、直角三角形的两条直角边分别为5和4,斜边为()。问题

3、正方形的面积为S,则它的边长为()。推进新课 一、二次根式的定义

很明显√

7、√

41、√S都是一些正数的算术平方根。像这样一些正数的算术平方根的式子。我们就把它称为二次根式。因此,一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。想一想:为什么一定要加上a≥0这一条件?

教师引导学生说出只有正数和零才有平方根,负数没有平方根。议一议:(1)-1有算术平方根吗?(2)0的算术平方根是多少?(3)当a<0时,√a有意义吗?

说明:负数没有平方根,更没有算术平方根。(4)√a表示什么含义?

目的:让学生了解算术平方根与二次根式的联系。

二、应用迁移

1、对二次根式概念的考查

下列式子,哪些是二次根式,哪些不是二次根式:

2、√3、1/x、√x(x≥0)、√0、-√2、1/(x+y)、√x+y(x≥0、y≥0)

分析:看是否为二次根式,关键看是否满足√a(a≥0)的形式。解:略

点拨:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数。

2、对二次根式被开方数范围的考查 当x为多少时,√3x-1在实数范围内有意义?

分析:有二次根式的定义可知。被开方数一定要大于或等于0,所以3x-1≥0,√3x-1在实数范围内有意义。解:由3x-1≥0,得x≥1/3,当x≥1/3时,√3x-1在实数范围内有意义。

点拨:要使二次根式有意义,必须满足被开方数要大于或等于0.三、巩固提高

1、下列式子中,是二次根式的是()A、-√7 B、三次根号7 C、√x D、x

2、当x为何值时,下列各式在实数范围内有意义?(1)√x-3 ;(2)√2/3-4x ;(3)√-5x ;(4)√/x/+1

四、本课小结 本节要掌握:

1、形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。

2、要使二次根式有意义,必须满足被开方数要大于或等于0.五、教学反思

1:本节课从旧知识引入,降低难度,激发了求知欲,和进一步探索的欲望。

2:本节课重点培养了学生的思维能力,使学生真正理解概念。3:学生用字母表示数还不熟练还有一部分同学错误认为a表示正数,-a表示负数。所以还应加强符号教学。

4:对以前的完全平方式运用欠佳,所以应加强知识之间的综合运用能力。

第三篇:二次根式加减教学反思

二次根式加减教学反思

本课时内容是二次根式加减法的计算,教学方法上以启发引导,讲练结合为主。通过引导学生自主探究,培养学生的数学探究能力及合作交流的意识。

本节课开始时,首先复习巩固二次根式的化简,从而引入同类二次根式的概念。复习最简二次根式的内容,为下面探究二次根式加减法的解法做铺垫,这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。再由七年级学习的合并同类项,类比得出合并同类二次根式的法则,从而最后引入二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用。通过具体例题的计算,由教师引导,学生共同总结出“二次根式的加减”的具体步骤和注意问题:①化成最简二次根式;②找出同类二次根式;③合并同类二次根式,注意不是同类二次根式的不能合并。再通过两个练习让学生对所强调内容进行巩固。拓展提高题目是为了了解学生对本部分内容的灵活运用能力。从达标测试来看,学生对本节课能够基本掌握。还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.

在设计本课时教案时,着重从以下几点考虑:

1.先通过类比同类项,合并同类项来引入二次根式的加减运算,再由学生自主讨论总结二次根式的加减运算法则。通过一组例题归纳计算步骤,使二次根式加减法运算有据可依,减少出错率。

2.对二次根式加减的教学与整式的加减比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。巩固本节内容,作业分层布置,使不同层次学生都有发展和提高。

通过本节课的教学,发现以下问题:

1.将二次根式化简为最简二次根式是这节课的关键一步,因此这一环节应多下一些功夫,多用些时间。2.在讲授例题时应在仿照整式加减多次板书展示,学生更容易举一反三。3.对易出错的地方应重点强调,再三强调,如:“二次根式的系数是带分数的要写成假分数的形式”,真正做到让每一名学生都清楚这一要求。

第四篇:二次根式的加减教学反思

二次根式的加减教学反思

二次根式的加减教学反思

(一)本次研修我们主要研讨的是“如何以问题情境为载体提高课堂教学的有效性”。所以本节课除了创设生活情境外,最主要是设计一系列的问题串为教学情境,类比同类项、合并同类项和整式加减,通过老师的问题情境,一步步的探索发现同类二次根式的定义和二次根式加减法的法则。使学生在己有知识的基础上,自然迁移到新的知识,建立新旧知识之间的联系,形成数学知识体系。归纳起来说,就是本节课我们本着以学生为主体,以设计的问题情境为主线,运用类比的思想,并且贯穿一定量的练习,来完成本节课的教学目标。

从实际授课来看,存在以下问题:

一、对学生可能出现的问题,备课时有预设到,但没有再进一步强化、追踪没有作到位。

例如,在什么是同类二次根式时,预设到“根指数相等”可能会有问题,出了一个选择题来巩固根指数的问题,并且第4小题也是一个根据根指数相同来完成的问题。第4小题学生完成的不好,没有从老师讲选择题时得到提示,同时如果讲完后再作一个小练习加以巩固可能会更好。

二、从加减计算来看,学生对于去括号变号、运算顺序、分数的开方掌握的不好。,这一类的运算掌握不好,导致课堂进度有点拖,以致能力提升题没有进行,“没有老底子,就没有新文章”。更要求我们对学生的计算能力要高度重视。同时也觉得自己在备课时把重点放在了前半部分,对计算题的设计没有到

位,对难易的掌握不好和对学生可能出现的错误没有预设到,比如不知要合并,不知如何合并。所以最后一题小测题和学以致用第4小题换一下就更好了。

三、没有利用好课堂内生成的问题情境,对所学知识进行巩固,并完成新知识的生成。

比如:让学生举例的同类二次根式,这里有同学说了一个,我当时只是简单地想成学生化简不对。其实这里可以加个上几个例子,点出根指数的问题,这样在后面作第4小题的时候学生的难度会小一点。

今后在教学中,精心备课的同时,一定要注意学习素质以此加强自身素养,而现在的国培正是我们提高的好时机。感谢国培,加油吧!

二次根式的加减教学反思

(二)我在教学二次根式的加减时,先了解了学生前面所学,然后根据学生具体学情,认真备课。我感觉同学们学习的效果非常好,学习气氛浓厚,能够自

主合作探究学习,教学效果好。

本节课开始时,首先由一个求修建两块运动场的草坪面积的实际问题出发,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。

然后指导学生根据问题去自学课本。通过自学课本解决问题,从而自己独立学习,结合小组合作学习掌握二次根式的加减运算。

通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。

总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。

二次根式的加减教学反思

(三)通过这节课的学习,学生将掌握二次根式加减法运算法则,并发现二次根式加减法的实质就是合并被开方数相同的二次根式,这正如整式加减法的实质就是合并同类项一样,为了确认哪些被开方数完全相同,需要将二次根式化成最简二次根式,这时一定要认真细心,避免出错。

本节课是二次根式加减的第一节课,它是在二次根式的乘除的基础上的进一步学习,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。

在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了

分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。

第五篇:《二次根式加减》的教学反思

《二次根式加减》的教学反思

“好的开始是成功的一半” 导入新课,是课堂教学的重要一环。,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。

本节课开始时,首先由一个求修建两块运动场的草坪面积的实际问题出发,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。然后指导学生根据问题导读单,去自学课本。通过自学课本再完成问题导读单,从而自己独立学习结合小组合作学习掌握二次根式的加减运算。通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。

通过深入各组巡视指导可知问题导读单的设计是合乎学生的认知能力的。课堂上最精彩的还数同学们的学习汇报。例如:一位同学汇报时说:被开方数相同的二次根式是同类二次根式。另一位同学马上站起来说:不对,应该是化简后被开方数相同的二次根式才是同类二次根式。又如:一位同学汇报时说:二次根式的加减就是合并同类二次根式。此时另一位补充说:准确的说应该是先化简,再判断哪些是同类二次根式,然后再合并。通过同学们的汇报,可见同学们在自学时是全身心的投入,充分的研究、讨论、交流才有如此准确的回答。

总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。这一切都归功于韩博士给我们带来的《新课程有效课堂教学行动策略》。我们应该借课改的东风,继续学习新课程的理论知识,武装我们的头脑,用它来指导我们上好每一堂课。

下载《二次根式的加减》教案设计word格式文档
下载《二次根式的加减》教案设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次根式的加减教学反思

    15.3二次根式的加减法——教学反思 本节课的重点是同类二次根式与合并同类二次根式。 这节课涉及到最简二次根式与合并同类项的知识,所以,最好在课前复习一下最简二次根式的定......

    二次根式的加减评课案例

    “二次根式的加减”教学案例剖析 教学内容:人教版义务教育课程标准实验教科书《数学》九年级上册第14页—15页例1,二次根式的加减。 教学目标 1.知识与技能:理解最简二次根式......

    16.3.1二次根式的加减教学反思

    16.3.1二次根式的加减教学反思 这节课的知识技能目标是,1.探索二次根式加减的方法和步骤。 2.会进行二次根式的加减运算。过程与方法目标是,通过类比的方法学习二次根式的加减......

    二次根式的加减教案(5篇模版)

    16.3 二次根式的加减教学目标知识与技能: 1. 了解同类二次根式的概念,会判断同类二次根式; 2. 能正确合并同类二次根式,进行二次根式的加减运算。 过程与方法:经历类比二次根式的......

    二次根式的加减 评课稿

    《二次根式的加减》评课 刘晶老师《二次根式的加减》这节课,整个课堂教学一切以学生为中心,以快乐为根本。课堂师生关系和谐,教师是组织者、促进者,学生是“太阳”,教学围绕“太......

    【拓展训练】二次根式的加减课后拓展训练5篇

    二次根式的加减1.根式的是2.下列各式中,运算正确的是A.a6a3=a2B.(a3)2a53.计算[来源:Zxxk.Com])D.A.4.设a>0,b>0,则下列运算错误的是===a2[来源:学科网]5.下列计算正确的是216.下......

    《二次根式的加减》第二课时教案分析

    《二次根式的加减》第二课时教案分析 一、内容和内容解析 .内容 二次根式的加减乘除混合运算. 2.内容解析 二次根式的混合运算是本章所学内容的综合运用,运算过程中用到乘法分配......

    二次根式单元测试

    二次根式单元测试1.在、、、、中是二次根式的个数有______个.2.当=时,二次根式取最小值,其最小值为。3.化简的结果是_____________4.计算:=5.实数在数轴上的位置如图所示:化简:.6.已......