第一篇:《比例》公开课教案
比例
1、比例的意义和基本性质
第一课时
教学内容:P32~3
4比例的意义和基本性质
教学目的:
1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。
3、使同学初步感知事物间是相互联系、变化发展的。
教学重点;比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把同学举的例子板书出来,并注明比的各局部的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。
12:16
:
4.5:2.7
10:6
同学求出各比的比值后,再提问:哪两个比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
5:
2.4:1.6
60:40
15:10
每面国旗长和宽的比值有什么关系?(都相等)
5: =2.4:1.6
60:40=15:10
2.4:1.6=60:40
象这样表示两个比相等的式子叫做比例。
比例也可以写成: = =
(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)
5路程(千米)
200
指名同学读题。
教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问
边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:
第一次所行驶的路程和时间的比是80:
2第二次所行驶的路程和时间的比是200:
5让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”
根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12=,35: 42=,所以 10:12=35:42。(以上举例边说边板书。)
(3)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)
6:3和12:6
35:7和45:9
20:5和16:8
0.8:0.4和0.3:0.6
同学判断后,指名说出判断的根据。
②做P33“做一做”。
让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。
③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。
④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。
2、教学比例的基本性质
(1)教学比例各局部的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各局部的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。
指名让同学指出板书中的比例的外项、内项。
(2)教学比例的基本性质。
教师:我们知道了比例各局部的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是 2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让同学分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个一起的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“假如把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
同学回答后,教师强调:假如把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
3.巩固练习。
前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
(2)P34“做一做”。
三、巩固深化,拓展思维
1、说说比和比例有什么区别?
2、填空
5:2=80)
2:7=():
51.2:2.5=():
43、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。
(1)6:9和 9:1
2(2)1.4:2 和 7:10
(3)0.5:0.2和 :
4、下面的四个数可以组成比例吗?把组成的比例写出来。、3、4和6
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、课堂练习,辅助消化
P36~37第3~6题。
六、课外补充,拓展延伸
1、判断。
(1)假如3×a=5×b,那么5:a=3:b。
(2): 和 : 中,能与 : 组成比例的是 :。
(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。
2、用、8、、12四个数分别作为比例的项,你能组成几个比例?
3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。
第二篇:《解比例》公开课教案
解比例
教学过程:
一、回顾旧知,复习铺垫:
1、前面我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)
3∶8 = 15∶40 3 × 40 = 8 × 15 94.5=
9× 0.8 = 1.6 × 4.5 1.60.8x:4=1:2 x× 2 = 4 × 1
提问;根据积相等的式子,你能求出最后一题里的x吗?
3、导入课题(板书课题)
二、引导探究,学习新知:
1、解比例的含义。
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
(1)出示例2,学生读题,理解题意。找出等量关系式:
模型高度:原塔高度=1;10。
(2)哪个量是已知的?哪个量是未知的?怎样求模型的高度?(把未知项设为X)
解:设这座模型的高是X米。
(3)根据等量关系式列出比例:X:320=1:10(4)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。怎样解呢?
根据比例的基本性质可以把它变成积等式:10x=320×1。
说明:这样解比例也就是解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。(因为解方程要写“解:”,所以解比例也应写“解:”但这里还用写“解:”吗?为什么?)(5)学生汇报,教师板书解比例的过程。
问:结果后面要带单位名称吗?并强调:这是应用题,别忘了,还要答哦。
从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成积等式,然后用解方程的方法来求未知数x。
3、教学例3。出示例3:解比例
1.56= 2.5X提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)这种分数形式的比例也能根据比例的基本性质,变成积等式来求解吗? 学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6 让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成积等式。)变成积等式以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成积等式。)
三、应用反馈:
完成 “做一做”第1题。
学生独立解答,指名板演,集体订正。
四、全课小结,提高认识:
什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?
五、布置作业:
练习八第8题 2012、3、24
第三篇:用比例解决问题 教案教学设计.公开课
《用比例解决问题》教学设计
(人教新课标六年级下册)清油河希望小学 齐士兰
【教学内容】:教材59页的例题5和60页“做一做”的第一题和练习九的相关习题。
【教学目标】:
1.掌握用比例知识解答含有比例关系问题的步骤和方法。
2.提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。【教学重点】:
1.判断题中相对应的两个量和它们的比例关系。
2.利用比例关系列出含有未知数的等式,运用比例知识正确解决问题。【教学难点】:
1.掌握用比例知识解答解答应用题的步骤和方法。
2.理解“用比例解决问题”的结构特点,从而构建知识结构。【教学准备】:多媒体课件 关系,列出方程。教学过程:
一、复习铺垫,引入新课。(课件出示)
1、我们已学习了比例的哪些知识?
2、判断下面每题中的两种量成什么比例?(1)速度一定,路程和时间.(2)路程一定,速度和时间.
(3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.(5)全校学生做操,每行站的人数和站的行数.
3、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?
(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。
(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。
(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。
4、导入:看来同学们正比例和反比例的知识学得都很不错,今天我们就一起来研究——用比例解决问题。用正比例知识解答含有比例关系问题的步骤和方法相信自己今天能学好吗?(板书课题:用比例解决问题)课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?
二、探究新知。
1、教学例5(1)学生再次读题,理解题意。思考和讨论下面的问题: ① 问题中有哪三种量?哪一种量一定?哪两种量是变化的? ② 它们成什么比例关系?你是根据什么判断的? ③ 根据这样的比例关系,你能列出等式吗?
(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(3)根据正比例的意义列出方程:
根据: 张大妈家用的总钱数:张大妈家用水的吨数=李奶奶家用水的总钱数:李奶奶家用水的吨数。即:水费:吨数=每吨水的单价(一定)
解:设李奶奶家上个月的水费是χ元。12.8: 8=χ:10 8χ=12.8×10 χ= 12.8÷8 χ=16 答:李奶奶家上个月的水费是16元。(4)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
2.自学指导
(1)梳理两种相关联的量(课件出示)
①、问题中有哪两种量?它们对应的数据分别是多少? ②、它们成什么比例关系?你是根据什么判断的? ③、根据这样的比例关系,你能列出等式吗?
()一定,所以()和()成()比例。也就是说,两家的()
和()的()相等。
(2)、学生交流、互查自学结果。教师个别指导。(3)、学生展示学习结果,教师适时点拨。
①、刚才的问题你是怎么解决的?那位同学愿意来说一说?
②、刚才同学们自学解决了问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?得出用比例解决问题的“五步曲”(板书):
一.梳(梳理相关联的两种量)
二.判(判断相关联的两种量成什么比例)三.列(设未知x,根据判断列出比例)四.解(解比例)
五.检(用自己熟练的方法来检验)。
3、教学例6(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?
① 抓住不变的东西----总的本数, 判断成反比例关系 ② 建立关系式:每包本数×包数=总数
③ 学生述说,教师板演用反比例解法的书写过程。④ 出示书上第二问,学生回答列式。(3)学生独立解答。(2)指名板演,全班交流。
三、巩固提高。
做一做:教科书P59“做一做”
1、2题,让学生先判断两个量的关系,再进行解答。
(1小明买了4枝圆珠笔用了6元,小刚想买同样的3枝圆珠笔,要用多少钱?(2)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?
(3)小兰的身高1.5米,它的影长是2.4米,如果同一时间同一地点测得一棵树的影长时4米,这棵树有多高?
3、深化练习:
一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?
四、课堂小结。
今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?用比例解决问题首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。
五、课堂作业。
1、一个晒盐场用100g海水可以晒出3g盐。照这样计算,如果一块盐田一次放入585000吨海水,可以晒出多少吨盐?多少吨海水可以晒出9吨盐?
2、车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?
第四篇:比例教案
比例的意义和基本性质
【教学内容】
教科书第48~50页例
1、例2,课堂活动及练习十一1,2题。【教学目标】
1.理解比例的意义,认识比例各部分的名称。
2.让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。
3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。【教学重点】
理解比例的意义和基本性质。【教学难点】
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。【教学准备】
课件,扑克牌10张(2~10以及A),圆规一个。【教学过程】
一、复习准备
(1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
12∶1634∶184.5∶2.710∶6
教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
[点评:通过回顾比的有关知识,唤起学生已有的知识经验,为教学比例的意义做好必要的准备。]
二、探究新知
1.提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题——比例的意义和基本性质。板书:比例的意义和基本性质
2.探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长26……
影子长39……
教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。
学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:3∶2=9∶6,6∶2=9∶3……3:2=9:6,6:2=9:3……
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的意义)
教师:2∶9和3∶6能组成比例吗?你是怎么知道的?
指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”再判断2∶5和80∶200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
[点评:教师根据教科书例1内容,让学生在众多的比中找出相等的比,从而认识比例的共性,再由学生抽象概括出比例的意义,并及时进行巩固训练,充分发挥了学生的主体作用,培养了学生的语言表达能力。]
3.认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出3∶2=9∶6和6 : 2=9: 3的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4.教学比例的基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5.运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?
学生讨论后回答:因为0.4×75=25×1.2,所以0.4∶25和1.2∶75能组成比例。
[点评:以上比例的基本性质教学设计,注重把知识的探究过程留给学生,问题让学生去发现,共性让学生去探索,充分尊重学生主体。]
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。
(2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×
()=()×()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6
[点评:练习的设计具有层次性,让学生掌握正确组成比例的思路和方法,使各种层次的学生思维都得到发展,从而加深了对知识的理解和掌握。]
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。
[全课总评:整个教学过程主要由“探究”和“应用”这两大环节组成。“探究”是本节课最重要的一个环节,在这个环节里,主要引导学生怎样通过自己的努力去发现比例的秘密,整个环节力求体现学生的自主探究、独立思考、合作交流的学习过程。从中提高学生的数学学习能力。设计中还特别注意发展学生的个性,如要求学生写出所有有意义的比,用自己的语言归纳比的意义和比例的基本性质等。在“应用”这个环节里,一是强调及时应用、及时反馈,如学习了比例的意义后及时练习巩固,巩固反馈后再学习比例的基本性质;二是重视学生在练习中发挥教师的指导作用,使练习的针对性很强,增强了练习的效果。总之,整个教学设计层次分明,科学合理,环环相扣,水到渠成。]
第五篇:小学数学六年级下册《用比例解决问题》公开课教案
小学数学六年级下册《用比例解决问题》公开课
教案
教案设计 设计说明
本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面: 1.合理复习,有效铺垫。
温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。
2.巧妙引导,拓展思维。
《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归
一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于
第 1 页 学生创新思维能力的培养,确保数学活动的有效性。课前准备
教师准备 PPT课件 教学过程
⊙复习铺垫,引入新课 1.复习铺垫。
课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。
(2)一辆汽车从甲地开往乙地,行驶的速度和时间。提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)2.引入新课。
生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)⊙合作交流,探究新知
1.学习例5,用正比例知识解决问题。(1)课件出示教材61页例5主题图。
(2)学生读题思考,并汇报题中的已知条件和所求问题。预设
生1:已知条件是张大妈家上个月用了8 t水,水费是28元。
第 2 页 李奶奶家用了10 t水。
生2:所求问题是李奶奶家上个月的水费是多少钱。(3)指名完整叙述题意。
根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?(4)讨论、交流。
师:例5的问题可以用什么方法解决? 预设
生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。
生2:可以用比例方法解决。设李奶奶家上个月的水费是x元,用正比例知识解答。
师:为什么可以用正比例知识解答? 预设
生:因为用水的吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。
师:如何运用正比例关系列方程解答? 预设
生:解:设李奶奶家上个月的水费是x元。8x=28×10
第 3 页 x= x=35
答:李奶奶家上个月的水费是35元。(5)拓展练习。
王大爷家上个月的水费是42元,上个月用了多少吨水?
(学生独立完成后汇报交流)
第 4 页