第一篇:《轴对称》练习题(最终版)
一、知识点
1、关于“轴对称图形”与“轴对称”的认识
⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。
⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。两个图形中的对应点叫做__________
2、线段垂直平分线的性质
⑴线段是轴对称图形,它的对称轴是__________________
⑵线段的垂直平分线上的点到______________________相等
3、角平分线的性质
⑴角是轴对称图形,其对称轴是_______________
⑵角平分线上的点到______________________________相等
4、等腰三角形的特征和识别
⑴等腰三角形的两个_____________相等(简写成“________________”)
⑵等腰三角形的_________________、_________________、_________________互相重合(简称为“________________”)
⑶如果一个三角形有两个角相等,那么这两个角所对的________也相等(简称为“____________________”)
5、等边三角形的特征和识别
⑴等边三角形的各____相等,各____相等并且每一个角都等于________
⑵三个角相等的三角形是__________三角形
⑶有一个角是60°的____________三角形是等边三角形
二、选择题
1.下列几何图形中,○1线段 ○2角 ○3直角三角形 ○4半圆,其中一定是轴对称图形的有()
A.1个 B.2个 C.3个 D.4个
2.图9-19中,轴对称图形的个数是()
A.4个B.3个C.2个D.1个
3.下列判断正确的是()
A.经过线段中点的直线是该线段的对称轴
B.若两条线段相等,那么这两条线段关于某直线对称
C.若两条线段关于某直线对称,那么这两条线段相等
D.锐角三角形都是轴对称图形
4.下列图形中不是轴对称图形的是()
A.有两个角相等的三角形;
B.有一个角是45°的直角三角形.C.有两个角分别是50°和80°的三角形
D.平行四边形.5.一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是()
A.25°B.40°C.25°或40°D.不确定.6.有一个等腰三角形的周长为25,一边长为11,那么腰长为()
A.11B.7C.14D.7或1
17.若三角形中最大内角是60°,那么这个三角形是()
A.等腰三角形B.等边三角形C.不等边三角形D.不确定
8.等边三角形的两条高线相交所成钝角的度数是()
A.105°B.120°C.135°D.150°
9.若△ABC两边的垂直平分线的交点在三角形的外部,则△ABC是()
A.锐角三角形 B.直角三角形
C.钝角三角形Xkb1.comD.都有可能
10.若三角形一边上的高也平分这条边,那么这个三角形是()
A.直角三角形B.有两条边相等
C.等边三角形D.锐角三角形
11.图9-12中,点D在BC上,且DE⊥AB,DF⊥AC。若DE=DF,则线段AD是△ABC的()
A.高B.中线C.角平分线D.BC的中垂线
三、填空题
1.写出两个只有一条对称轴的几何图形:.2、等腰三角形一边长是7cm,另一边长15cm,则等腰三角形的周长是_____
3、等腰三角形中的一个角等于100°,则另两个内角的度数分别是__________
4、等腰三角形的一个外角是100°,则这个三角形的三个内角分别为_______________________________
5、如图,在△ABC中,AB=AC,∠A=50°CD为腰AB上的高,则∠BCD=_________
6、在△ABC中,AB=AC,若∠A-∠B=30°则∠A=________,∠B=________
7.如图9-13所示,△ABC中,BC边的垂直平分线DE交BC于D,交AC于E,BE=5厘米,△BCE的周长是18厘米,则BC= 厘米.8.如图9-14,在Rt△ABC中,∠C=90°.BD平分∠ABC交AC于D,DE垂直平分AB,若DE=1厘米,则AC= 厘米.四、解答题
1.在某一地区有居民区A、B、C,如图9-15.现想在此地区建造一牛奶站P,使P到A、B、C三点的距离相等.请你作出P点.2.已知∠AOB,试在∠AOB内确定一点P,如图9-16,使P到OA、OB的距离相等,并且到M、N两点的距离也相等.3.试确定一点P,使点P到DA、AB、BC的距离相等,如图9-17.4、如图所示,有一等腰三角形木块,小刚想把它分成两个直角三角形,但没有画直角的工具,仅有一把刻度尺,你能帮小刚想一个办法吗?说明理由。
5、如图,A、B两个村庄在河岸的同一侧,现要在河岸上开设取水口,铺设灌溉管道。为了使管道铺设距离最短,请在图中画出取水口P的位置。
6、如图,在△ABC中,AB=AC,D是BC边上的中点,∠BAC=110°,求∠C和∠BAD的度数。
7、如图,已知∠AOB=40°,CD为OA的垂直平分线,求∠ACB的度数。
8、如图,△ABC中,∠A=90°,BD为∠ABC平分线,DE⊥BC,E是BC的中点,求∠C的度数。
9、例4:如图:在△ABC中,AB=AC,AD⊥BC,DE⊥AB于点E,DF⊥AC于点F。试说明DE=DF。
第二篇:轴对称练习题
《轴对称》
1.下列图形中不是轴对称图形的是
6.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,A与三合,若∠A=75°,∠1=96°,则∠2等于
A.54°
B.45°
C.96°
D.69°
8.如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于点E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系为
A.EF>BE+CF
B.EF=BE+CF
C.EF<BE+CF
D.不能确定
9.直角三角形中一个锐角等于30°,斜边和最小的边的和为12cm,则斜边的长为
A.3cm
B.6cm
C.8cm
D.9cm
10.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有
A.6个
B.7个
C.8个
D.9个
13.如图,已知△ABC中,∠BAC=130°,现将△ABC进行折叠,使顶点B、C均与顶点A且合,则∠DAE=__________.14.如图,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,则∠ADE=_______.15.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°,则△PMN周长的最小值是_________.19.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.21.如图,AB=AC,∠A=40°.(1)请画出AB的垂直平分线MN交AC于D,连接BD;
(2)求∠CBD的度数。
21.如图,在等边三角形ABC中,BD⊥AC于D,延长BC到E,使CE=CD,AB=6cm.(1)求BE的长;
(2)判断△BDE的形状,并说明理由。
第三篇:轴对称教案
轴对称教案
轴对称教案1
教学内容:
西师版小学数学第六册第118页例1、例2及相关练习题。
教学目标:
1、在观察、操作、交流中认识轴对称图形的一些基本特征,能辨认轴对称图形,找出轴对称图形的对称轴。
2、通过观察、操作活动发展学生的空间观念,培养学生的观察能力和动手操作能力。
3、充分感受数学中的对称美,体会数学与生活的紧密联系。
教学重点:
认识轴对称图形的基本特征。
教学难点:
掌握辨别轴对称图形的方法。
教学准备:
教具:多媒体课件、一些简单的几何图形、蝴蝶图形。
学具:一些简单的几何图形(一些对称、一些不对称)
教学过程:
一、游戏活动激趣,认识对称物体
1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的'一部分,分男、女生猜。
2、认识对称物体
(1)师质疑:为什么女生猜得又快又准呢?
(2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)
【设计意图:通过猜物体游戏,激发学生学习兴趣和调动学生学习积极性,通过分析猜谜成败原因,加深学生对对称物体特征的再认识,为后面认识轴对称图形打下基础。】
二、猜想验证新知,认识轴对称图形
(一)初步感知对称图形
1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。
2、师小结:像这样的图形,叫做对称图形。(板书:图形)
(二)猜想验证对称图形
1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?
2、寻找验证方法:师引导学生寻找验证对称图形的方法。(板书:对折)
3、小组合作验证:用对折的方法,验证以上平面图形。要求学生对折后认真观察:将对称图形对折后有什么发现?理解“重合、部分重合、完全重合”。
师小结:这些对称的图形通过对折能够完全重合。
(三)理解认识对称轴,轴对称图形
师:打开折过的对称图形,你有什么新的发现?
师小结:对称图形,对折后能完全重合的这条折痕,我们就把它叫“对称轴” 。这些图形就叫“轴对称图形”.
【设计意图:数学来源于生活,将学生熟悉的物体抽象成平面图形,以小组合作、探究学习为载体,让学生经历观察——猜想——验证的学习过程,进而发现、理解、掌握轴对称图形的本质特征,从中培养学生动脑动手的能力。】
三、巩固练习,强化新知
1、基础练习:判断。(是否是轴对称图形)
2、应用练习:猜一猜。(课件出示P120的第2题)
3、生活中数学:例举生活中的轴对称物体。
【设计意图:通过巩固练习,强化学生对轴对称图形的全面认识,帮助学生更加准确的判断轴对称图形。】
四、拓展延伸,动手创造
1、欣赏生活中的轴对称物体,感受对称美。
2、生动手做轴对称图形,创造美。
【设计意图:通过欣赏、制作轴对称图形,让学生充分感受数学中的对称美,体会数学知识来源于生活。】
五、全课小结
这节课我们认识了什么图形?什么样的图形是轴对称图形?
板书设计:
认识轴对称图形
完全重合
对折
轴对称教案2
教学内容:教材第3~4页例1和例2。
教学目标:
1、通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3、培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:会利用轴对称的知识画对称图形。
教学准备:幻灯片、课件。
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
(3)轴对称图形的`概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1、判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
2、
三、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一第1、2题。
2、课外作业:
板书设计:
轴对称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
轴对称教案3
第四单元
第五课时:轴对称图形
教学内容:轴对称图形、对称轴、对称性质;课本第100~101页,完成相应的“做一做”题目和练习二十六的第1~7题。
教学目的:使学生初步认识轴对称图形与对称轴;会找出对称图形的对称轴;并知道对称轴两侧相对的点到对称轴的距离相等。
教具、学具:剪刀、复写纸、白纸。
教学过程:
一、复习。
说一说你是如何用对折的方法找出一个圆的圆心的。
二、新授。
1.导入。
在日常生活中,我们会看到一些物体或图形很特别,把它们像圆一样沿着一条线对折,两边就完全重合;如枫树叶、蝴蝶(出示图形)等这些图有对称美;那么,到底什么样的图形才是轴对称图形,这就是我们今天要学的内容。
板书课题:轴对称图形。
2.轴对称图形与对称轴。
教师把一张白纸对折,中间夹上双面复写纸,在纸上面画半个花瓶,然后把纸展开,得到以折痕为对称轴的整个花瓶。
从图中不难发现折痕两侧物体形状与图形的大小完全一样。
师生一起打开课本第121页,看上半页的三个图(树叶、蜻蜓、天平)由学生说一说他们的特点。(他们以树叶的主干、蜻蜓的身躯、天平的指针为轴左右两侧形状、大小一样。)
做课本上的实验,把一张纸对折并按书中的.图样画好,再用剪刀剪下,把纸打开可看到它是以树干这直线为轴,两侧的图形能够完全重合。
小结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形(指着树叶等)就是轴对称图形。折痕所在的这条直线叫做对称轴。
回答课本第121页下面的“做一做”。
3.画(找对称轴)。
对称轴的轴法是一横一点一横点穿过图形,如“—·—·—”。先要求学生判断下面图形是否轴对称图形?然后要求学生判断下面图形是否轴对称图形?
学生画出对称轴。
最后要求学生在课本上量一量对称轴两侧相对的点到对称轴的距离是否相等。通过多处的测量可概括出:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。
三、巩固练习。
1.课本100页“做一做”第1题。
1
第四单元
2.课本第101页“做一做”第2题。先找出对称轴然后再量一量对称轴两侧
相对的点距离是否相等。
3.练习二十六第1~6题。
课后小结:
2
轴对称教案4
教学内容:
北师大版三年级数学课本23-24页的相关内容。
教学目标:
1、知识与技能:通过观察和操作活动,初步认识轴对称图形。会直观判断轴对称图形,能用对折的方法找出轴对称图形的对称轴。
2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
3、情感态度与价值观:在学生的学习活动中,让学生学会欣赏数学之美。
教学重点:
认识轴对称图形的基本特征,能画出轴对称图形的对称轴。
教学难点:
能直观判断出轴对称图形,能用折纸的方法找出对称轴;
教学准备:
课件、一些轴对称图形图片、纸和剪刀、长方形、正方形、圆形纸等。
教学过程:
一、巧设情境,激发好奇心。
花园里有只可爱的蝴蝶在翩翩起舞。一天她遇见了小蜻蜓,对小蜻蜓说:“我们是一家人。”小蜻蜓就奇怪了,我是小蜻蜓,你是蝴蝶,怎么是一家人了。蝴蝶笑了笑说,在大自然里还有很多物体和我们是一家呢。
二、欣赏图片,建立表象。
1、这不,你瞧。蝴蝶找来了什么?
课件出示:蝴蝶、枫树叶、七星瓢虫、蜻蜓、脸谱、交通标志、数字8、飞机、天平、一些字母等。这些图形漂亮吗?学生欣赏各种对称图形。
2、引导观察图形,交流汇报
刚才同学看到的这些图形在日常生活中还有很多很多,那么这些图形中你发现都有什么特征呢?把你的发现在小组内说一说。
师:你发现了什么数学问题?
生1:我发现他们都很美。
生2:左右一样。上下?
生3:我发现它们是对称的。
师:你是怎么理解对称的?
生3:对称就是左右两边是完全一样的。
3、教学板书“对称”
(1)课题导入
师:是啊,刚才我们看到的其实是生活中的轴对称图形的现象。今天老师和大家一起来研究数学上的轴对称图形。(板书课题)刘元平三下《轴对称图形》教学设计刘元平三下《轴对称图形》教学设计
(2)结合剪纸作品,抽象概念
师:谁能在最快的时间内剪出一个葫芦吗?
学生自己操作创作。(先把纸对折后再剪)
教师选几张学生剪得好的轴对称图形贴在黑板上。
找出不同的剪法,让学生说一说是怎样剪的。
师:请大家观察,比较这些图形,你发现了什么?
生1:他们的形状不同。
生2:他们的大小也不同。
生3:他们的两边是完全一样的。
生4:这些图形上都有一条折痕。
现在你们把你自己剪的图形重新对折一下,你们会发现他们怎么样?(两边完全重合)是的,那么什么样的图形才是轴对称图形呢?
学生回答自己理解的轴对称图形。(对折后两边的部分完全重合的`图形就是轴对称图形)
那么这条折痕应该给它取个什么样的名字呢?(对称轴)
老师把课前准备好的作品展示给大家看。(灯笼、衣服等)
三、实践操作,深化认识。
1、组织活动——折一折
(1)每个学生剪下附页中的图1,先对折,看两边是否完全重合,再打开,看折痕的位置。
(2)学生小组合作,完成折一折。组织学生将自己小组折出的对称图形进行展示并汇报各自的折法。
(3)学生认识对称轴,中间这条折痕我们就把它叫做对称轴,用虚线表示。
请学生用铅笔画出你们剪出的对称图形的对称轴。
2、小结:通过折、画,小朋友们都认识了轴对称图形,那么现在谁能为大家介绍一下这样的图形。
得出结论:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就叫做轴对称图形。
折痕所在得直线叫做对称轴。
四、巩固练习,深化认识。
1、看下面那些图形是轴对称图形。刘元平三下《轴对称图形》教学设计
2、找一找下列哪些数字、汉字、字母是轴对称图形,刘元平三下《轴对称图形》教学设计
3、用对折的方法找出下面图形的对称轴
五、回归生活,体会美感。
1、谈一谈:其实生活中也有很多对称的图形、物体,你能说一说吗?
2、欣赏生活、艺术、自然、建筑、剪纸等领域的对称之美。
六、总结全课,升华主题。
通过这节课的学习,你有什么收获?
七、板书设计、
轴对称
对折:两边完全重合——轴对称图形
折痕——对称轴
轴对称教案5
[设计说明]
本节课是在学生会画对称轴,深刻理解对称轴两侧的图形能够完全重合的特点的基础上进行教学的。
[教学目标]
1、在教学中充分发挥了学生的主体作用,让学生在合作交流中画出轴对称图形的另一半,并总结出画法,加深印象。
2、培养学生的想象力和空间观念。教学中让学生先想象已知轴对称图形的另一半及整体分别是什么样的,然后动手操作,充分发挥了学生的想象力和空间观念。
重点:
能在方格纸上按要求画出轴对称图形的另一半,画出一个图形的轴对称图形。
难点:
经历画图的过程,掌握画轴对称图形的方法。
[课前准备]
教师准备PPT课件
[学生准备]
铅笔尺子
教学过程:
[创设情境,导入新知]
师:观察轴对称图形引导学生发现轴对称图形的特征:两边对称、大小相等、距离相等、方向相反。
师:这节课我们就根据轴对称图形的这些特征继续学习轴对称的知识。
[板书课题:轴对称再认识(二)]
合作交流,学习新知
1、课件出示教材23页上面情境图中的图①。
师:看这幅图,请同学们猜一猜这是什么的一半。
预设生:它是一座房子的一半。
师:请同学们在头脑中想一想它的另一半是什么样的,整座房子应该是什么样的?(课件出示教材23页上面情境图中的图②)
这是淘气根据轴对称的知识画出的房子,他画得对吗?
2、学生发表自己的看法,全班进行交流。
预设生1:淘气画出的房子对折后不能完全重合,他画得不对。
生2:房子下面最左边一点到对称轴有2格,最右边一点到对称轴也应该有2格,所以他画得不对。
3、补全轴对称图形。
(1)尝试画图。那么怎样在方格纸上根据轴对称图形已有的一半画出它的另一半呢?请同学们在下图(教材23页中间例题情境图)中试一试,再在小组内说一说自己的方法。(学生画图、讨论,教师巡视)
(2)展示作品,交流方法。将学生画好的图形展示出来,集体评议,请画得正确的.同学说说自己是怎么画的。
4、师生共同总结方法。补全一个轴对称图形的方法:一是找出图形上每条线段的端点;二是根据对称轴画出每一个端点的对称点;三是顺次连接这些对称点,得到轴对称图形的另一半。
5、画出已知图形的轴对称图形。(课件出示教材23页下面例题)
(1)独立解决,先与同伴说说自己的画法,再全班交流。引导学生明确画轴对称图形的方法:找出每条线段的端点,画出所有端点关于对称轴的对称点,再顺次连接这些对称点。
(2)思考:比较第二个和第三个问题,它们的相同点和不同点是什么?
学生观察、讨论后
师小结:这两个问题画图的方法相同。不同点在于第二个问题给出的图形是轴对称图形的一半,对称轴在图形上,第三个问题给出的图形是一个完整的图形,对称轴在图形之外。
设计意图:在合作交流中总结出画轴对称图形另一半的方法,再学以致用画已知图形的轴对称图形,巩固所学,培养了学生的空间观念和想象力。巩固练习完成教材24页“练一练”1、2题。
[课堂总结]
轴对称现象在我们生活中的应用非常广泛,给了我们许多美的享受,课后要多观察,并将所学知识应用到实际生活中去。
[布置作业]
学练优,教材24页“练一练”3题。
轴对称教案6
教学目标:
1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:
经历发现长方形、正方形对称轴条数的过程。画平面图形的对称轴。
课前准备:
小黑板、学具卡片。
教学活动:
一、复习导入
出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形) 指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答) 把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴) 谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)
二、教学例题
1.谈话:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。 学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。 提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?
3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。让学生充分发表意见。 如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗? 如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴? 指名到黑板上量长方形的边,取中点。学生说怎样画对称轴,教师画,画成如右形状,并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。
5.让学生各自在课本上画长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?
三、教学“试一试”。
谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸, 再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。 先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗? 再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。
提问:正方形有几条对称轴?
四、教学“想想做做” 。
1.做第1题。
(1)指名读题。提问:这道题让我们先做什么,再做什么,最后做什么?
(2)让学生各自按题目要求操作。
(3)提问:哪几个图形是轴对称图形,各画了几条对称轴? (可补充说明:四条边相等的四边形是菱形,它有2条对称轴)
2.做第2题。
(1)让学生自己读题。
(2)提问:题中的'图形都是轴对称图形吗?第几个图形不是轴对称图形,为什么?
(3)看一看每个轴对称图形有几条对称轴,在书上画出来。 (4)展示部分学生的答案,共同评议。(从左往右三个图的对称轴分别有3、4、5条)
3.做第3题。
(1)让学生读题后自己在书上作图。
(2)展示部分学生的答案,共同评议。
(3)提问:谁能以左图为例说一下作图的步骤?(先找出三个对应的顶点再连线)
4.做第4题。
(1)谈话:先仔细观察题中的四个图形各是什么图形,谁来说一说?(指名回答) 如果学生说第一个图形是三角形,要追问:是什么样的三角形?第三个图形学生可能会说是五边形,谈话:这个图形不是一般的五边形,它的五条边都相等,五个角也都相等,它是正五边形。同样的,第四个图形是什么图形?
(2)让学生各自画每个图形的对称轴,能画几条画几条。
(3)展示部分学生的答案,共同评议。
(4)提问:每个图形各画了几条对称轴,你发现了什么?(各边相等、各角也相等的图形,对称轴的条数与边数相等)
5.做第5题。让学生自己制作,然后在小组内观赏评议,每组找出最佳作品,在班内展览。
五、全课总结
提问:这节课你对轴对称图形有了哪些新的认识?你学到了什么本领?有什么收获?还有不明白的问题吗?
轴对称教案7
教学目标
知道轴对称物体及轴对称图形,明了轴对称图形的概念。
能判断已知图形是否是轴对称图形,会判断常用的平面图形是不是轴对称图形,并能找出有几条对称轴。
通过操作,培养学生的动手操作能力,向学生渗透美的教育。
教学重点
轴对称图形的意义及会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。
教学难点
会判断哪些图形是轴对称图形,并能找出常用平面图形的.对称轴。
教学方法
课前准备
自主学习式;小黑板、投影片
教学设计
思 路
一、实物导入
由轴对称物体向轴对称图形过渡。
举例:生活中的轴对称物体和常见的轴对称图形。
揭示轴对称图形的概念,特点及判断方法。
二、寻找对称轴
1、出示一组图形,判断是否是轴对称图形。通过操作寻找对称轴。
2、学生动手操作,寻找常用平面图形的对称轴。
三、巩固练习
出示图形进行判断,并找对称轴。
轴对称教案8
教学目标:
1、在观察、操作等活动中,进一步认识轴对称图形及其对称轴。
2、能根据对称轴的特点,在方格纸上画出简单轴对称图形的对称轴。
3、培养学生认真观察的良好学习习惯,在主动参与画图形的活动中,感受图形的对称美。
教学重点:进一步认识轴对称图形。
教学难点:会在方格纸上画出简单轴对称图形的对称轴。 教学过程:
一、创设情境,导入新知。
(拿一张白纸)同学们,我们用一张白纸可以做什么?发挥你的想象力,动手试一试。
生:折出很多基本图形。(三角形、正方形、长方形、平行四边形、梯形等等。)
师引发思考:这些图形有什么特点?(是轴对称图形吗?什么是轴对称图形呢??这节课我们就来学习-------轴对称再认识一 首先大家要明白本节课的学习目标。
学习目标:
1、通过在折基本图形的活动中重新深入理解什么是轴对称图形和对称轴。
2、能根据对称轴的特点,在方格纸上画出简单轴对称图形的对称轴。
二、自主学习,探究新知。
1、折一折
用课前在附页中剪下来的基本图形折一折,判断哪些图形是轴对称图形,哪些不是轴对称图形。(动手实践,体会特征)
生汇报:正方形、长方形、平行四边形、等腰梯形、等边三角形、菱形都是轴对称图形。
师:为什么呢?(请学生上黑板把每一种图形在投影下展示折的过程、说出是轴对称图形的原因)引导学生说出:因为这些图形沿着一条直线对折,直线两边的部分能够完全重合,所以是轴对称图形。
2、辩一辩:平行四边形是轴对称图形吗?你们同意淘气和笑笑谁的观点?(生亲自动手折一折,看一看、辩一辩。)
学生会得出不同的结果,有的说是轴对称图形,有的说不是轴对称图形。因为学生有的懒得折,凭自己的直观感觉判断,这时出示课件演示平行四边形对折的过程,强调什么是轴对称图形以及它的对称轴。老师和学生一起小结:如何判断轴对称图形?
如果一个图形沿着一条直线对折,直线两边的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是对称轴。
(师强调:轴对称图形是一条直线。)
3、尝试画出简单轴对称图形的对称轴。
认真完成课本21页表格,有困难的学生可以亲自动手实践来找一找图形的对称轴。(小组合作完成)
三、展示点拨,交流提升。
师:我们先交流画等腰梯形的对称轴。
生1:先用对折的方式找到对称轴,再用直尺画出这条对称轴。
生2::我们是直接观察方格图找到对称轴的。:等腰梯形的两腰是一样长的`。上底有4格正好可以分成左右各2格。下底有8格,刚好可以分成左右各4格。这样我们可以在上底和下底的中间画出它的对称轴。这样,对称轴的两边都是完全一样的方格,这两边的方格沿这条对称轴是可以完全重合的。
师看来:我们不但用对折的方法来找对称轴,还可以借助方格图来找对称轴。那我们如果遇到图形无法对折时该如何画对称轴呢?请看多媒体课件演示方法。
先找一组对称点并连接,再画这条线段的垂直平分线。
(简评:首先用对折的方法研究怎样找出一个轴对称图形的对称轴,并画出对称轴,再过渡到没法对折,要先通过观察方格图来找对称轴的这种情况。这样由浅入深,从特殊
到一般,符合儿童的认知特点,也有利于学生循序渐进地掌握画对称轴的方法。)
四、达标检测,分层训练。
1、课本22页第1题。
2、第2题。
3、思考:圆是轴对称图形吗?他有几条对称轴?
五、总结提升,反思评价(谈收获)
这节课你有什么收获?怎样判断一个图形是不是轴对称图形?
轴对称教案9
教学目标:
1.初步认识轴对称的概念,能找出轴对称图形的对称轴。
2.在画、折、剪等自主探索的活动中培养学生的观察、表达、思维、空间想象能力,同时进一步培养学生的探索意识和合作精神。
3.联系生活实际,通过感知、认识、欣赏、制作轴对称图形,渗透美育,感悟学习的价值。
教学准备:
教具:多媒体课件、剪刀、彩纸。
学具:图片、剪刀、彩纸。
教学过程:
一、创设情境,初步感知
1.小游戏
师:今天我们先来做一个小游戏,老师这里有一些图形只能看到一半,你能不能猜出来它原来是什么?(出示图案的一半,随着学生的回答逐一显示整个图形)
师:你们是怎么猜出来的?
2.师:它们的两边真的都是一样的吗?我们来动手折一折。
师:你发现了什么?
师:对折以后,图形左右或上下两边完全合在一起,我们叫作“完全重合”。
3.揭示课题:像这样沿一条直线对折,两侧的图形能够完全重合的图形叫作“轴对称图形”。
师:你认识“轴”这个字吗?
师:和你的同桌说一说你手中的图形是什么图形?
二、自主探究,体验新知
1.想一想:如果沿着其它的线折,两边会不会完全重合?师:所以只有沿着这条折痕对折,两侧的图形才能够完全重合,你知道这条特殊的线的名字吗?板书:对称轴(齐读)
2.介绍生活中的“轴”。出示汽车模型上的两个轮胎中间的“轴”。
3.师:你能画出手中的图形(游戏中的图形)的对称轴吗?学生画完后交流并展示。
4.出示生活中的轴对称图形,找找它的对称轴在哪里?
师:看,我们的许多汉字都是“轴对称图形”,像“中、品、田”等,还有数字“8、0”也是。
5.判断图中的线是不是对称轴?为什么?出示图片,想一想怎样画的线才是对称轴?你能画几条?
6.师:大家一起来试一试,看书第5题,是对称轴的打勾,不是的打叉。师:为什么茶壶上的红线不是对称轴呢?生:左边是壶嘴,右边是壶柄,两边不一样。出示一个茶壶,请4个小朋友从不同的角度观察它,其他同学猜一猜哪个小朋友看到的`茶壶是轴对称图形,哪个小朋友看到的不是?
师:是呀,不同的物体,从不同的角度去看,会有不同的发现。
7.师:接下来,请小朋友一起来帮忙看一看,哪些图形是轴对称图形,为什么?(出示图形)和小组里的伙伴们一起商量、商量。
8.师:这是两幢漂亮的房子,它们都是轴对称图形吗?
师:看书第3题,用尺把对称轴画出来。
师:和老师的核对一下,同意吗?(多媒体演示)
师:画完后还要检查一下,两边一样吗?
9. 小结
师:今天我们学习了什么?你知道了什么?
师:想一想,在我们的生活中有轴对称图形吗?生举例。
师:老师也收集了一些轴对称图形的图片,一起来欣赏一下。
(多媒体演示生活中有代表性的轴对称图形:蜻蜓、老鹰、雄伟的教堂、上海城市规划展示馆、嘉定孔庙、法华塔、泰姬陵。)
师:许多的昆虫和鸟类都是轴对称图形,可以帮助它们保持平衡。
三、巩固练习
小组操作讨论
师:这4个图形大家认识吗?它们是不是轴对称图形?如果是,画出它的对称轴,并想一想,你最多能画几条?画完后,在小组里一起交流一下。
1.学生自己折一折,画一画。
2.小组交流。
3.全班交流。
四、动手操作、制作轴对称图形
师:生活中,书本上有那么多的轴对称图形,你有没有办法很快剪出一个轴对称图形?
1.学生拿出纸来尝试。
2.师:说说你是怎么很快地剪出轴对称图形的?
生:先把纸对折起来,再画出图形的一半,减下来,然后展开就是一个轴对称图形了。
3.观看录像:如何制作心形、蝴蝶、松树等。
4.师:对呀,我们可以运用轴对称图形的特点,来制作许多漂亮的轴对称图形。你能再制作一个与众不同的更美的轴对称图形吗?
5.展示交流。
轴对称教案10
课 题:
复习圆、轴对称图形,数学教案-复习圆、轴对称图形。
教 学目标:
1、使学生进一步掌握相关图形的特征及运算。
2、使学生的空间观念和想象能力得到培养。
教学重点:公式及计算。
教学难点:技能技巧。
教具准备:小黑板 幻灯机
教学过程
一、基本训练:
1、口算:
在听算本上听算《口算卡片》(38 )。
(1) 统计3分钟以内做完的同学加以表扬,然后指名报答案。
(2)全班统一核对,老师选重点点拨,集体订正。
2、口答:
指名回答上一节课所学知识。解答百分数应用题应该注意什么?
二、进行新课:
1、复习圆的概念。设计如下问题:
(1)圆的圆心是如何确定的?
(2)什么是半径、直径,同一个圆的半径和直径有什么关系?
(3)不同的圆有不同的圆周率吗?
(4)什么是圆的周长?什么是圆的面积?
2、复习圆的周长和面积的计算:
(1)做143页的第11题。
(2)集体讲评,让学生说一说圆周长的计算公式及面积的计算公式。
(3)教师和学生一起回忆公式推导过程,小学数学教案《数学教案-复习圆、轴对称图形》。
(4)在小黑板上出示如下问题:让学生口答。
A、填空:圆周长是其直径的( )倍。
大圆的半径是小圆的3倍,大圆的圆周长是小圆的( )倍。
B、判断:圆周率等于3。14 ( )
圆的.面积大小只与半径的长短有关。 ( )
集体讲评。
3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。
三、巩固练习:
1、做练习三十五 的第23 题:
(1)全班座练,指名板演。教师巡视,指导补偿生。
(2)统一讲评,集体订正。重点讲清:图形的特点。
2、做练习三十五 的第24 题:
(1)全班座练,指名板演。教师巡视,指导补偿生。
(2)统一讲评,集体订正。重点讲清:运用的公式。
四、当堂检测:(当堂效果验收,是课堂作业)
在A本上做练习三十五 的第30 题。
五、当天检测: (当天效果验收 ,是家庭作业)
在B本上做练习三十九 的第28、29 题
教后感:
数学教案-复习圆、轴对称图形
轴对称教案11
一、背景分析
1.1学习任务分析
《轴对称》是在学生学习了平移变换后,对生活中出现的一种新的图形变换的研究。前面在《全等三角形》这一章中,学生已经学习了“全等变换”,其中包含了“平移变换”、“翻折变换”、“旋转变换”;“轴对称”其实是一种“翻折变换”,所以这节课的内容可以看作是前面学习的延续。同时,这一节的内容也为下阶段进一步探索等腰三角形的性质,学习它的判定方法作铺垫。因此我将掌握轴对称图形和两个图形成轴对称的概念作为本节课的教学重点。
1.2学生情况分析
从心理特点来看,八年级的学生活泼、好动,对直观事物的感知能力强,想象力丰富,正逐步从形象思维过渡到抽象思维;在知识储备上,他们在小学时对轴对称图形就有了一定的认识,又刚学习了平移变换和三角形全等,已经具备一定的动手操作能力与图案设计能力,有一定的空间想象能力和合作交流能力; 同时,由于我目前所教的这两个班级是我从七年级开始带起的,他们已经养成比较好的学习习惯,对我的一些教学理念也比较熟悉,所以我可以在教学过程中进行一些思维延伸。但他们的抽象、概括能力仍需要我们老师进一步培养。因此,我将本节课的难点定为:轴对称图形和两个图形成轴对称的区别与联系。
二、教学目标设计
根据上述分析,考虑到学生已有的认知和心理特征,制定如下教学目标:
1、知识与技能:通过欣赏、感知、折叠等活动认识轴对称图形的共同特征,能识别简单
的轴对称图形及对称轴,通过实践操作,理解轴对称图形和两个图形成轴对称的区别。
2、过程与方法:经过剪纸、折叠等活动,发展学生的形象思维和空间观念,积累数学活
动的经验,在动手实践中学会与人合作、彼此交流。
3、情感态度与价值观:初步获得动手的乐趣和成就感,欣赏并体会对称美,感受轴对称
的价值,培养学生热爱生活、热爱祖国的情感。
三、教学媒体设计
教学媒体的.最佳作用点和作用时机是密不可分的。我通过视频《千手观音》和猜图形游戏,引入新课,激发学生学习兴趣,为了让学生感悟轴对称图形的特征,选择了让学生用剪刀剪下图形并折叠的动手实验的方法。为突破难点,采用了多媒体演示将一个轴对称图形分割成两个图形,让学生很顺利地理解了轴对称图形与两个图形成轴对称的区别。从而达到教学媒体与教学目标、内容及过程的有效整合。
四、课堂结构设计
本课主要以小组合作模式下的问题教学法和引导探究法为主进行教学。采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学中,以学生为主体,教师起辅导作用,充分调动学生学习的积极性,学生经历这样的学习过程真正做到学有所思、思有所得、练有所获,从学会转变为会学。课堂结构设计如下:
五、教学过程设计
(一)“玩”对称,激趣引入
1、千手观音
从心理学的角度来说,好的开始将会在人的大脑皮层建立优势的兴奋中心,从而激发人的学习兴趣。因此,在本节课的引入上,我先通过一个视频,春晚中聋哑人表演的节目《千手观音》让学生感受轴对称的美,同时提出问题:这是一种怎样的美呢?从而引出课题:轴对称。
[在这里从贴进学生生活的认知导入,不仅自然引出课题,更主要是可以迅速吸引学生的注意力,从而激发学生的求知欲和创造美的潜能。]
2、猜测图形
观察课件中的漂亮图形,猜一猜,整个图形是什么?(学生们将踊跃发言,顺利猜出前几个图形,但最后一个图形的样子难以定论)。
教师顺势提问:为什么前面几个图形能很快猜出,而最后一个很难猜呢?引出学生回答出对称二字。并进一步提出问题:要判断一个图形两边是否一样,你有什么好办法呢?(学生可能会回答:对折后看是不是重合。)
[由于学生在小学时已经学习过轴对称,对前几个图形“对称”的特性非常熟悉,让学生利用已有的生活经验来进行判断,初步感知轴对称。同时,通过游戏活动营造一种活跃的课堂气氛,诱发学生进一步探究新知的热情。]
(二)“识”对称,感悟特征
1、剪一剪(课前教师给每个学生发几张正方形纸片)
问题:一张正方形纸片,如何剪出下面的图案? (有的学生可能会在正方形纸片上画出图形后沿着边缘剪下图形,也有的学生可能对折后再画图剪下。)
2、议一议(哪种方法剪下的图形更美?)
[通过两种不同剪法的比较,让学生再次感受轴对称的美,感悟轴对称的特征:“图形的两边是一样的。”]
3、折一折
通过刚才的操作大家发现了什么?如果我们把剪好的图形沿着某条直线折叠,会出现什么情况呢?(让学生将自己剪下的图形对折一下,再把图形展开。)
学生可能会说对折后两边是完全重合的;也可能会说折痕两边一模一样;还可能会说对折后再展开,中间有一条线,这条线两边的形状是一样的。
师:像这样的图形就叫做轴对称图形。(板书:轴对称图形)
4、说一说
(1)请用你自己的话说说,什么样的图形是轴对称图形?
(学生发表自己的看法,集体完善“轴对称图形”的概念:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。)(教师根据学生的回答板书概念)
(2)认识对称轴。
(教师指着折痕,引导学生说出折痕所在的这条直线就是对称轴,并强调对称轴是一条直线。)(板书:折痕所在的这条直线叫做对称轴。一般用虚线画。)
5、练习:判断下面图形是不是轴对称图形。
[轴对称图形的概念的形成是本节的教学重点之一,所以这里突出概念形成过程的教学,通过让学生自主剪、议、折、想,层层推进,使学生经历了初步体验——深入探究——发现归纳这一知识形成的过程,帮助学生把握概念的本质特征并及时进行反馈。]
(三) “分”对称 提升认识。
1、把一个轴对称图形沿对称轴剪开,并均匀地向两边分离,一个图形变成了两个,这两个图形也给人一种对称的美感,生活中有许多相似的图形,我们应该如何表述它们的关系呢?
这时,有同学会说,这也是对称的,也应该叫做轴对称图形。但也有许多学生会迟疑不决,处在两难境地,课堂上议论纷纷,有的说是,有的说不是,有的学生可能会说出轴对称图形的定义中说的是一个图形,而现在是两个图形,我便顺势引导得出两个图形成轴对称概念。
(板书:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。)
2、学生利用前面剪出的图形与屏幕上的图形类比讨论两个图形成轴对称的概念及性质,从而
深刻理解相似知识的相似之处。
3、学生分组讨论轴对称图形与两个图形成轴对称这两个概念的联系和区别,师生共同归纳总结如下:
4、下列给出的每幅图形中的两个图案是轴对称吗?如果是,试着找出它们的对称轴,并找
出一对对称点。
5、如图所示,请观察并指出哪些是轴对称图形,哪些图形成轴对称.
[通过分割轴对称图形,顺利地引出了两个图形轴对称的情形,进而得出两个图形成轴对称的概念,同时也对学生自主归纳出两者的区别与联系作了铺垫,有效地突破了难点。]
(四)“做”对称,拓展延伸
思考1:如图,把一个正方形纸片按以下方向对折后,沿虚线剪下,再展开,则所得的图形
大致是( )
从下往上折 从左往右折 沿虚线剪下
(A) (B) (C) (D)
这道题目有些抽象,所以我让学生先观察,再猜想一下答案,最后再利用手中的剪刀和正方形纸片,按照题目中的要求折叠、裁剪,最后展开。
学生很容易得到答案是B。
这时我提问:为什么是这样的图形?这里面有什么数学奥妙?
我用设问的方式引导学生进行分析:
设问1:纸张对折的作用是什么?——作“轴对称”!
小结:
轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天所学的知识,把我们的教室,你的家,我们的祖国装扮得更漂亮。
轴对称教案12
【教学内容】
人教版义务教育课程标准实验教科书二年级上册P68。
【教学目标】
1、了解生活中的对称现象,认识轴对称图形的一正些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。
2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新能力。
3、在认识、制作和欣赏轴对称图形的过程中感受物体或图形的对称美。
【教学重点】
认识轴对称图形的基本特征。
【教学难点】
设计制作轴对称图形。
【教具、学具准备】
教师准备课件、一个蝴蝶图形;学生彩纸、剪刀、直尺及若干对称图形和不对称图形。
【教学过程】
一、创设情境,感受对称
1、认识生活中的对称现象。眼镜导入新课。
二、小组合作,探讨轴对称图形的特征
1、认识对称图形
师:看,老师还给大家带来了几张美丽的图片。
生:蜻蜓、树叶、蝴蝶、脸谱的图片
师:请孩子们仔细观察这些图形,你能发现它们共同的特征吗?
生1:它们的两边一样的。
生2:它们是对称的。
师:你是怎样理解对称的?
生2:它们的'两边是一样的。
师:这些图形真像你们说的那样,左右两边完全一样吗?
生:是。
师:谁能想个办法来验证这些图形左右两边完全一样呢?
生:对折。
师:对折,这个方法听起来倒挺不错的,(板书:对折)到底怎样对折,你能折给大家看一看吗?
生:上台演示折蝴蝶图形
师:刚才这位孩子用对折的方法证明了这个蝴蝶图形的左右两边是完全一样的。那大家也来试一试,好吗?
生齐:好。
师:那先听清楚要求:请小组长拿出1号信封里的4张图片,小组里的每个同学,把其中一个图形对折一下,看看这些图形的两边是一样的吗?开始吧。
生:动手操作
师:谁来说说你验证的结果?
生1:我折的是脸谱图形,对折后它的两边是一样的。
生2:我折的是蜻蜓图形,它对折后,两边是一样的。
生3:我折的是蝴蝶图形,对折后它的两边是完全一样的。
生4:我折的是树叶图形,对折后,它的两边也是完全一样的。
师:孩子们刚才折这些图形,对折后,它们的两边都是完全一样的,我们就说它们对折后,它们的两边重合了。
师:老师这里还有一个图形,是什么?
生:桃子图形。
师:想折吗?
生齐:想。
师:这个图形就在你们的3号信封里,小组长拿出来分给同学们折一折,说说你发现了什么?
生1:我发现了桃子图形一边大,一边小。
生2:它没有重合。
师:一点都没有吗?
生齐:有一点。
师:蝴蝶图形呢?
生齐:全部重合了。
师:像蝴蝶图形这样对折后两边全部重合我们就称为完全重合。
师:孩子们看大屏幕(课件演示蜻蜓、树叶、蝴蝶、脸谱四个图形对折后左右两完全重合的画面)
教师小结:像这样对折后,两边完全重合的图形,我们就把它叫做“对称图形”。(板书:对称)
2、认识对称轴
师:请大家打开对折后的对称图形,看一看,你又有什么新的发现?(把图贴在黑板上)
生:有一条线。
师:这一条线就是我们刚才折的折痕。
师:这条折痕是怎么形成的?有什么特别的地方?
生1:是对称图形对折后形成的。
生2:折痕的两边是完全一样的。
师:这样的折痕是对称图形中特有的,所以人们把这条折痕所在位置的直线,给它起了个形象简洁的名字,叫对称轴。(板书:对称轴)
师:我们通常用虚线来表示对称轴。(板书:画对称轴)
师:像这样,对折后,对称轴两边完全重合的图形我们就叫做“轴对称图形”。 (板书:轴)
三、应用拓展、巩固新知
1、判断轴对称图形
师:刚才我们认识了轴对称图形,那给你一些图形,你能找出轴对称图形吗?(课件出示:P68的做一做)
2、猜一猜
师:老师给你们看几张轴对称图形,不过我只给你们看它的一半,你们能猜出它们是我们所学过的哪些汉字、数字或英文字母吗?
3、找对称轴
师:今天,老师还给你们带来了几个图形老朋友,打个招呼吧!
(课件依次出示:长方形、正方形、圆形)
师:这几个图形各有几条对称轴呢,请你折一折。(边说边点课件出示)
四、师生共结
师:孩子们真会观察生活,对称的物体真是无处不在,只要孩子们留心观察,我相信你们还会找到更多更美的对称。
轴对称教案13
教学内容:北师大版数学五年级上册第二单元《轴对称再认识二》
教学目标:1、通过画图的活动使学生进一步理解轴对称图形的特征。
2、能在方格纸上按要求画出轴对称图形的另一半,画出一个图形的轴对称图形。
3、经历观察分析、欣赏想象,积累图形运动的思维经验,发展空间观念。
教学重点:能在方格纸上按要求画出轴对称图形的另一半,或一个图形的轴对称图形。
教学难点:经历画图的过程,掌握画图的方法。
教学资源:课件、题卡。
教学过程:
一、创设情境,揭示问题。
1、课件出示图片,引导学生观察想象。
2、课件出示教材主题图1(半个小房子)。
A:你能想象一下它的另一半吗?(学生想象)
B:课件出示淘气画出的房子另一半。
教师提出问题:和你想象的图案一致吗?和同桌说说哪里不一样?
3、揭示问题:如果要你画,你想怎样画?
【设计意图:由于本节课的重要目标是让学生进一步体会轴对称图形的特征,所以不能只停留在在简单的直观认识上,因此细致的观察和大胆的'想象是帮助我们达成目标的前提。所以课的伊始创设了一个观察图片的情境,激发学生的兴趣同时也让学生体会观察和想象的重要作用,有意识的发展学生的空间观念。从生活情境的引入到抽象的图形的引入,是引导学生逐步抽象的过程,借助淘气的错误认知进入下一环节更深入的学习。】
二、探究发现,建立模型。
(一)活动一:
1、出示题卡,学生独立完成活动一。
2、展示成果并汇报方法。
3、师生总结画法。(根据轴对称图形来画)
(二)活动二:
1、题卡出示教材第二幅图。
2、学生充分想象图形的另一半是什么样子。
3、借助先前的经验画出该图形的轴对称图形。
4、汇报交流画法。
(三)活动三:
1、题卡出示活动三内容,引导学生观察每个图形的特点:图形相同,只是对称轴的位置不同,那么对称图形会有怎样的变化呢?让学生带着这样的疑问进行画图。
2、汇报画法,说发现。
(四)活动四:
1、课件出示教材第三幅图。
2、学生独立画图。
2、汇报画图方法。
3、说发现。
【设计意图:学生已经有了对轴对称图形的直观认识,再认识实质上是进入分析阶段,引导学生进行细致的刻画轴对称图形的特征,那么就需要借助一个有效的载体——画,所以在本环节设计了多个画的环节,就是通过画图让学生深入理解轴对称图形的特征。通过每一次活动的不断深入,都让学生对轴对称图形有更深层次的了解和掌握。】
三、理解应用,强化体验。
(五)活动五:
1、课件出示活动五内容,学生独立画图。
2、汇报画法,集体交流。
3、师生小结。
(六)活动六:
题卡出示活动六内容,引导学生观察、想象,发现规律。
2、完成画图。
3、交流想法和画法。
【设计意图:这两道习题的设计,实际是借助学生先前的经验,进行的更深一层的探究,如活动五的内容,设计了三道小题,是点、线、面三个方面的尝试与考验,让学生体会三者的不同,有力于学生跟好的理解轴对称图形,形成空间观念。而第二道习题则是让学生将细致的观察想象与轴对称的特征相联系,发现规律,同时也不乏趣味性。】
四、总结归纳,提升经验。
1、说说这节课,你最大的收获是什么?
2、是怎样发现的?
轴对称教案14
教学目标:
1、认识轴对称图形,理解对称轴的含义;
2、会画对称轴;
3、能够感受到轴对称图形的对称美,感悟到数学中蕴涵着的美。
教学准备:
蝴蝶的半边图、美术字“美”、平面图形、课件。
教学过程:
一、动手操作,感悟美
1、画蝴蝶
出示半张蝴蝶图,师:老师本来要送你们每人一张美丽的图画,可是因为忙,只来得及画了一半,你们能自己将它们画完吗?
学生拿出老师发的半只蝴蝶图,自己画。
教师巡视,注意观察学生是怎样画的,展示学生画得蝴蝶图,比一比,谁画得蝴蝶漂亮,为什么漂亮?再请画得好的学生说说自己是怎样画的,讨论用什么方法可以画得更好。
2、教师在学生汇报的基础上总结:先把一张纸对折,在折好的一侧画出图形,用剪刀剪下来,再把纸打开,就可以得到一副美丽的图画了。
3、学生用刚才总结出来的方法,自己设计制作一个图形,并将做好的图展示出来。
4、认识轴对称图形和对称轴
这样的图形有什么共同的特点?(对折后两边完全重合,都有一条折痕)
这样的图形我们给它们取个什么名字呢?请大家看看书上给我们介绍了什么知识。
学生自学课本,并说一说通过阅读书本知道了什么。
5、教师在黑板上演示如何画对称轴。
6、师:你们能指出你刚才画的图形的对称轴吗?指给同桌看看。
7、电脑出示一幅由两个完全一样的人头像拼成的`图形。让学生判断这幅图是轴对称图形吗?
8、猜一猜:老师出示“美”的对折图,让学生猜猜这个轴对称的字是什么?“古人当初造字时是否就已经发现对称就是一种美呢?”
9、生说一说见过的轴对称图形。
10、介绍数学的对称美。
(1)师:在我们的周围到处都有对称图形。自然界中冬有漫天飞舞的雪花,春有竞相开放的鲜花,动物、植物中也都有对称图形,你们看——
学生欣赏电脑出示的蜜蜂、花、雪花、松树……图。
(2)师:对称是一种美,对称美又是数学美的一种,它能使物体具有饱满、平衡、匀称、圆满的感觉,人们利用事物的对称美,创造了许多美丽而壮观的奇迹,请看——
学生欣赏电脑出示的人类创造的东方明珠电视塔、天安门、埃菲尔铁塔、宫殿、隐形飞机、赵洲桥……图。
二、认识平面图形中的轴对称图形。
1、学生以小组为单位,拿出信封中的平面图形,同学合作将不是轴对称的
图形的去掉。
再每人任选一个图形,画出它们的对称轴,能画几条就画几条。
2、学生汇报:你们是怎样找出它们的对称轴的?分别有几条?
三、练习强化。
1、练习二十七第4、5、6题。
四、总结升华
这节课我们认识了轴对称图形,能把你的收获在这里交流一下吗?
你能用你的认识说一说轴对称图形为什么是美的吗?
对称是美的,但并不是只有对称才美,有时不对称也是一种美,就看你有没有用心出发现美、创造美。
五、实际应用,创造美。
师:既然轴对称图形是如此美丽,我们何不用它们来装扮我们的教室呢?想一想,你打算设计怎样的图形来美化教室呢?
学生思考,并在班上说一说。
学生操作,做完后用透明胶贴在教室里。
评析:
1、体现学科综合的思想。
这节虽然是数学课,但是它所涉及的领域远远超出了数学学科的范围,与美术、美学都有交叉。学生在课堂上学习数学知识——轴对称图形,但同时也感受到了对称美,并且通过画蝴蝶、自己想象画以及设计图案布置教室等活动,进行美术创作,实现美的应用。
2、自主探究,主动获取知识。
本节课的设计没有囿于书本的限制,而是大胆采用学生画蝴蝶的操作形式,让学生在探索如何画得好看的过程中感受到对称才美,又在大家的交流中提炼出对折的方法。在这里,教师没有主导学生的思维,而只是提供了一个学生探索的空间。
3、生活是数学的最高境界。
对称图形是学生生活中司空见惯的,但是学生并不知道这些图形是因为对称而美,从生活中采撷对称的图、物,体现数学来源生活。让学生装扮教室,不仅提高学生制作对称图形的能力,更重要的是提高学生应用美、创造美的能力。
轴对称教案15
教材简析:
《轴对称图形》是六年《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。在本章教材的编排顺序中起着承上启下的作用。把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的了解。从而更好地发展学生的空间观念。
教学重点:掌握轴对称图形的概念。
教学难点:能找出轴对称图形的对称轴。
学生分析:学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。
设计理念:根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标:
1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。
2、通过操作活动培养学生观察能力,概括能力。
3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。
教学流程:
一、创设问题情境,导入课题。
1、(屏幕出示相关图片)观察下面的图形,(折一折,看一看)这些图形有什么特点?
2、指出:像前三个这样的图形,我们把它叫轴对称图形。
3、引入课题:轴对称图形
二、学生通过直观感知,操作确认等实践活动,加强对图形的认知和感受。
【实施动手操作,合作交流方式教学,让学生主动参与学习活动,经历和体验检验轴对称图形的方法。引导学生在课堂教学活动中感悟知识的生成、发展与变化。】
1、揭示轴对称图形的概念。
思考:现在你能用什么方法来检验一下这几个图形是轴对称图形。
a、学生试说轴对称图形的概念。
b、教师板书:轴对称图形的概念(完全重合重点强调)
c、让学生谈谈你是如何理解轴对称图形的。(以小组为单位,用手中图形举例说明)
【让学生自由组合成小组进行操作活动,让学生从操作中得出结论,从而更牢固的掌握了新知,尤其是让每一个学生都能亲自实验,培养了学生的操作能力和探索精神。】
d、教师结合图形说明对称轴的概念。
2、完成做一做。(让学生来汇报,同时电脑演示。)
3、我们已经学过不少平面图形,现在你动手折一折、看一看哪些图形是轴对称图形,对称轴各有几条,请你画出来。(汇报从杂乱----有规律)
【这一环节体现了教师注重学法指导,并能鼓励学生运用科学的方法学习。学生在教师自然而巧妙的引导下,运用多种器官参与观察活动,发展了学生的辨析概括能力,促进学生的思维向纵向发展。】
4、完成做一做1(口答,屏幕演示)
5、完成做一做2(口答,屏幕演示)
教师小结:这节课我们学习了轴对称图形,知道如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。并且知道折痕所在的这条直线叫做对称轴,我们还通过动手操作知道我们学过的平面图形中哪些是轴对称图形以及各有几条对称轴。
【教师作为学习过程的组织者、参与者、指导者,与学生共同探索、剖析、整理,层次分明,思维清晰。起到画龙点睛的作用。】
6、质疑。
巩固练习:1、数书P1021(口答)(屏幕)
2、数书P1024(口答)(屏幕)
3、画出每组图形的对称轴。
【让学生不仅能做出正确判断,且能准确画出,进一步发展学生的空间观念,培养学生主动探索,勇于实践的`科学精神。】
4、在自然界和日常生活中具有轴对称性质的事物有很多,你能不能举例说明?
5、欣赏具有轴对称性质的事物。
【突出数学知识与日常生活的紧密联系,从而培养学生自觉的把数学应用于实际的意识和态度,进而培养学生的应用意识。】
6、判断:
所有的平行四边形都不是轴对称图形()
所有的平行四边形都是对称图形()
【在运用中练习,在练习中提高,练习具有目的性、针对性、层次性和趣味性,使学生既巩固了知识又培养了能力。】
三、小结:通过这节课的学习你有哪些收获?
【通过这种方式引导学生小结本节课主要知识及学习活动,养成学习----总结----学习的良好学习习惯,发挥自我评价的作用,培养学生的语言表达能力。】
第四篇:《轴对称图形》
轴对称图形
执教教师:福安实小阳泉校区 陈雪丹 指导老师:福安市教师进修学校 林 萍
福安实小阳泉校区 林桂忠
教学设计思考和提出的问题
⒈苏教版第一学段对于“轴对称图形”的编排与人教版、北师大版有何不同,编排意图是什么?
⒉第一学段与第二学段的教学要求、侧重点的区别在哪?怎样实现第一学段的教学目标,又能为第二学段做铺垫呢?
⒊判断平面图形是否为轴对称图形如何把握尺度,判断复杂的标志图案是否超出了二年级学生认知理解的范围?
磨课要点
⒈起点。
知识起点:学生已经认识了长方形、正方形、三角形、平行四边形、圆等平面图形,认识了多边形。
已有生活认知:学生积累了一些剪纸的经验,会用对折的方法剪纸,认识了生活中一些物体或图形具有两边一样的特点。
思维特点:学生虽然认识到两边一样的现象,但并不大明白什么是“对称”。二年级学生年龄偏低,抽象思维能力还相对较弱的实际情况,对于“轴对称图形”概念的建立更应做到具体形象。
⒉终点:理解判断轴对称图形的本质就是对折后图形的两边是否完全重合。⒊过程与方法:学生新知的习得离不开已有的生活认知。本课的设计从猜测物体引出对称,通过“折一折、剪一剪、拼一拼”等活动理解轴对称图形的特征,最后通过平面图形、标志图案的判断丰富学生对轴对称图形的认识,学会运用知识解决问题,感受数学的价值。
教学内容
《义务教育教科书·数学》(苏教版)三年级上册第83-85页。
教学目标
⒈通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征。
⒉根据轴对称图形的特征,在一组实物图案或简单平面图形中识别出轴对称图形,能做出轴对称图形。
⒊欣赏图形对称所创造的美,进一步感受对称在生活中的应用,体会数学的价值。
教学重点:理解轴对称图形的特征。教学难点:学会准确判断轴对称图形。教学准备
学具:企鹅、飞机图形,剪刀、蜡光纸,四个小正方形,平行四边形每生一个。
教具:课件、企鹅和飞机图形等。
教学过程
一、游戏引入,感知特征 ⒈游戏竞猜,感知对称。
出示:企鹅、飞机、剪刀、梳子的一半图。
师:孩子们,我们一块来玩个游戏:“猜一猜我是谁”。游戏规则是:只露出物体的一半,看谁能很快猜出来。
师:为什么这三个物体你们一下子猜出来了,而最后一个不能确定呢? 师:这些物体两边形状大小都一样,就叫对称。
师:像这样两边对称的物体,你能在我们身边找到吗?抽象成图形,认识对称。
师:我们用眼睛观察发现这些图形的两边是对称,有办法证明吗? 师:请拿出其中的两个图形,自己动手折一折。折完你发现了什么? 师:哦,这两边叠在一起,哪边也不多哪边也不少,这就叫完全重合了!(板书:完全重合)
⒉动手操作,理解概念。
师:企鹅图形左右对折后两边完全重合了,这架飞机图形左右对折后,会不会完全重合呢?那它怎么也是对称图形呀?
师:那这只蜻蜓,你会朝哪个方向对折验证呢?
师:刚才我们通过对折(板书:对折),发现这些图形的折痕两边能完全重合,这就是今天我们要认识的轴对称图形。(板书:轴对称图形)
⒊剪纸活动,感知特征。⑴激活经验,交流方法。师:这张金鱼剪纸也是轴对称图形,你能猜出它是怎么剪出来的吗? ⑵动手剪纸,创造对称。
师:就按照你们刚才说的方法,自己设计一个喜欢的图案并把它剪下来。⑶交流反馈,领悟特征。
师:黑板上这些作品是轴对称图形吗?怎么让别人知道是呢? 师:用对折的方法同桌互相检查一下。
【设计意图:从游戏猜一猜中引入生活中对称现象,再由生活中的对称现象引出轴对称图形,这样的安排有利于学生由具体到抽象,由模糊到清晰,逐步体会轴对称图形的基本特征,获得轴对称图形的正确表象。学生初步认识轴对称图形的概念之后,紧接着通过剪纸活动,巩固对轴对称图形特征的认识。】
二、判断练习,体会特征 ⒈图形的判断。
师:如果不用动手对折,你能判断我们学过的图形朋友,他们是不是轴对称图形呢?
出示:长方形、正方形、不规则三角形、等腰三角形、平行四边形。重点研究平行四边形:这个平行四边形是轴对称图形吗?出现不同的看法,动手验证一下谁的想法正确。
师:这个平行四边形怎么折都不会完全重合,所以他不是轴对称图形。⒉车牌的竞猜。
师:平面图形中轴对称,汉字、字母、数字中也有呢!这个车牌的这些汉字,字母数字都是轴对称图形,但是他们只露出一半,你能猜出完整车牌号吗?
⒊剪纸图想象。
师:请看,这是一张纸,将它对折剪去两个圆。想想,摊开会是怎么样的? 师:我这里有三个选项,你认为会是哪一个呢? 师:说说你的想法。
师:孩子们,看来两边形状相同对折后可不一定是轴对称图形!图形的创造。
师:孩子们光会想象轴对称图形可不够,还要会创造呢!用四个小正方形拼成一个轴对称图形,想一想有几种不同的拼法,再和同桌一块拼一拼。
【设计意图:这个环节设计了四个活动:辨一辨——猜一猜——想一想——摆一摆,逐层递进,循环上升。让学生从不同角度体会轴对称图形的特征,在想象和动手操作中进一步激活学生的思维,也进一步培养了学生的空间想象和推理能力。】
三、联系生活,运用特征
师:孩子们,不仅图形中有轴对称,一些标志图案上也有呢!
师:这个汽车图案是轴对称图形吗?用手势表示折痕在哪? 师:行人图呢?圆形呢?这个圆形可以怎么对折呢?
师:把这个圆形和行人合在一起,就是一个什么交通标志?他是轴对称图形吗?
师:看来要判断一个图形是不是轴对称图形,不光得看外面的形状,还得考虑里面的图案。
师:既然行人图案不是轴对称图形,把它换成汽车,它是一个轴对称图形吗? 师:在判断轴对称图形时,多一些观察,多一份思考,就会多一份收获!【设计意图:数学知识来源于生活,通过让学生判断生活中一些常见的标志图案,丰富学生的感性认识。从一个简单的图案到两个组合的图案,由易到难,逐步提高学生综合判断能力,渗透从不同角度观察会有不同的收获的思想。如何把不对称的图形转变成对称图形,体现了思维的创造性和开拓性。】
四、总结回顾,拓展延伸
师:孩子们学完这节课,你对轴对称图形有了哪些认识?
师:罗丹曾说过“这个世界不是缺少美,而是缺少发现美的眼睛。”课后请孩子们继续去寻找生活中的对称现象,发现感受他们的美妙!
【设计意图:课后总结回顾,让学生对知识进行归纳整理,深化认识。同时鼓励孩子到生活中去寻找对称,感受数学与生活的密切联系,激发学生的学习热情。】
执教者简介
陈雪丹,女,本科学历,小学数学高级教师,福安市阳泉校区数学备课组组长。自1998年参加工作以来,始终恪守“一个都不能少这才是理想的教育”这句格言,用心对待学生,用青春和热情默默耕耘自己的三尺讲台。她从一名青涩的教师逐渐成长为福安市学科带头人、福安市名师、“阮志强名师工作室”成员,宁德市教坛新秀。执教的录像课“长方形和正方形的认识”获省一等奖,微课“解决问题的策略”获福建省三等奖,“认识角”一课获地区三优联评二等奖,2015年12月撰写的论文《微课在数学中的运用》发表于《考试周刊》。
所用教材内容
第五篇:轴对称说课稿
轴对称说课稿
轴对称说课稿1
尊敬的各位评委、各位老师,大家好!
我今天说课的题目是《轴对称》。下面我从教材的内容、学情分析、教法学法的实施、教学过程的设计等方面进行阐述。
一、教材的地位和作用
本节是《义务教育课程标准实验教科书》人教版八年级上册第十二章轴对称的第1节课,主要介绍轴对称图形、图形的轴对称的概念。教科书立足于学生的生活经验和教学活动经历,从观察生活中的对称现象开始,通过不同的活动引出轴对称图形和图形的轴对称的概念,进而体会两个概念的区别和联系。为学习轴对称的性质、变换,等腰三角形的直观认识打下坚实基础。在探索的过程中,经历观察、实验、归纳,激起学生对数学学习的情感体验,在学习中发现美、欣赏美、创造美,体会轴对称在现实生活中的广泛应用和它的文化价值。
二、教学重点难点
重点:轴对称图形和两个图形关于某直线对称的概念。
难点:比较观察轴对称图形和两个图形关于某直线对称的区别和联系。
三、学情分析
八年级学生有一定的知识水平,并具有丰富的想象力和鲜明的个性,对将来有着美好的憧憬。在相应理论的指导下对美有着强烈的创作欲望。本班学生基础扎实,观察能力、语言表达能力强,且有电脑网络这一资源优势可以适当运用,在相关活动中人人学有价值的数学。
四、教学目标
1、知识技能
①理解轴对称图形,两个图形关于某直线对称的概念。
②了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。
③了解轴对称图形与两个图形关于某直线对称的区别和联系。
2、数学思考
①通过学习轴对称图形和两个图形成轴对称,进一步认识几何图形的本质特征。
②通过学习轴对称图形和两个图形成轴对称的区别和联系,进一步发展学生抽象概括的能力。
3、解决问题
通过轴对称图形和两个图形成轴对称的学习,让学生关注生活,学会观察、增强交流。
4、情感态度
通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动。
五、教学方法、学习方法的选择
教法
任务型自主探究,情景教学、引导归纳相结合的方法。
学法
运用活动做载体,指导学生观察、实验、探究、归纳。
六、教具学具
多媒体,剪刀,手工纸,尺子等
七、教学过程
活动1
1、创设情境,展示图片,学生欣赏多媒体展示的图片(附幻灯片)
2、展示学生自带图片或物体。
活动2 实验探究
1、把一张纸对折剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,剪出一个美丽的图案,请同学模仿老师的方法试一试(图案不必一定相同)。
2、观察剪出的图案,再对比刚才演示的图形,你能发现它们有什么共同的特征吗?
3、通过观察、讨论交流,得出概念:
轴对称图形——如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。(板书)
活动3 一试身手
1、联系实际举出几个轴对称图形实例,并说出对称轴。
2、独自完成教材31页练习题。
3、完成课件中的各种练习。数字、字母、汉字中的轴对称。
活动4
1、将一张纸对折后,用针尖在纸上扎出如图所示的图案,观察所得图案。位于折痕两侧的部分有什么关系?
2、观察教材31页图12.1-3,看看每对图形有什么共同特征?每一个图案是由几个图形构成的?
3、通过观察、讨论交流,得出概念。
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫对称轴。折叠后重合的对应点叫做对称点。
活动5
1、观察下图中的每组图案,你能找出关于直线轴对称的图形吗?(附幻灯片)
2、完成教材120页练习。
活动6
问题:结合概念看图比较图片(附幻灯片)。
1、轴对称图形与两个图形成轴对称有什么区别和联系吗?
2、如果把一个轴对称图形分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?
3、成轴对称的两个图形全等吗?成全等的图形一定成轴对称吗?
活动7
1、巩固练习(幻灯片)
(1)观察下面的国旗哪些是轴对称图形?并找出它们每条对称轴。
(2)下列几何图形是轴对称图形吗?如果是指出图形的对称轴。
2、小结:这节课你学到了哪些知识?
3、布置作业
(一)课本习题12.1─1、2、6、7题.
(二)思考:“成轴对称的两个图形全等”的逆命题是什么?并判断它的真假。
八、板书设计
轴对称说课稿2
尊敬的各位评委,各位老师:大家好!
我今天说课的内容是九年义务教育六年制小学数学西师版第九册第二单元的内容:《轴对称图形》。
本节内容是学生在三年级下初步感知生活中的对称现象的基础上进行教学的,学生对对称现象有了一定的认识。而且自然界和日常生活中具有轴对称性质的许多事物为学生的认知提供了一定的感性基础。为此,教材在编写时十分注重直观性和可操作性。本节课,主要是帮助学生在原有的感性认识基础上建立轴对称图形和对称轴这两个概念。为今后进一步学习其他几何图形的有关知识打下基础。并在学生的学习过程中引导学生去发现和创造生活的美。根据课标的要求和五年级学生的认知特点。本节课,我确定如下的教学目标:
知识目标:通过观察操作等活动,认识并理解轴对称图形的特点,能准确判断哪些图形是轴对称图形,并能找出对称轴。
能力目标:通过各种实践活动,培养学生的观察能力,动手操作能力和创新思维能力。
情感目标:在探究新知的过程中,培养审美意识;激发学生学数学,爱数学的积极情感。
这样的目标设计,打破了传统概念教学的规律,从过于注重概念本身转化到更多的关注学生的学习过程和情感体验,立足教学目标多元化。不仅要使学生掌握知识目标,还要在学生的学习过程中发展各方面的能力,体会轴对称图形的美学价值。
而本节课的教学重点是: 认识并理解轴对称图形的特点。能准确判断哪些图形是轴对称图形.
根据教材的特点,结合学生的实际情况,我将本节课的教学难点确定为: 找出轴对称图形的对称轴
教学中,要用到的多媒体课件,彩色纸,几何图片,剪刀,尺子等是这节课要准备的教具和学具。
新课程标准指出:教师是学习的组织者,合作者,引导者,根据这一理念,我遵循激、导、探、放的原则。教学中,我精心设计游戏,诱导学生思考、操作。鼓励学生交流,并让学生运用知识去大胆创新。
学生作为主体,在学习活动中的参与状态和参与度,是决定教学效果的重要因素,因此,在学法的选择上,体现出玩中学,学中玩,合作交流中学,学后交流合作的思想。这节课,为了体现学生是学习活动的主体,我以学生的学为立足点,设计了如下的教学过程:
第一个环节 创设情景,激发兴趣 。
我先设计了一个学生喜欢的折纸游戏,我用彩色纸折了学生比较喜欢的简单图形,让学生仔细观察我折的方法。让学生说发现了什么?生边汇报,师边演示对折,既形象又生动地让学生体会到轴对称的含义。然后让学生自己动手折出对称图形,从而引出课题【板书】这样的设计,调动了学生的学习兴趣,营造出活跃的课堂气氛。又在游戏中渗透了轴对称图形的内容,为新课的学习做了良好的铺垫。
第二个环节 主动参与,探索新知
为了让学生进一步感知轴对称图形的特点,我给每个小组准备了蝴蝶、蜻蜓,奖杯、枫叶等图片。首先让学生找出里面的轴对称图形,说一说找的方法,然后让学生想想,这些图形有什么规律?让学生通过刚才的感知和操作活动初步感知平面图形的对称性,并能感悟和理解“对折”、“完全重合”、“折痕”等关键词,有的学生归纳得出:这些图形都要沿着中间的直线对折,图形的两侧叠起来是完全一样的。而我,则引导学生用规范的数学语言来表达概念,都要沿着直线对折,[板书] 两侧完全重合。这样的图形就叫做轴对称图形。而折痕所在的这条直线(画)就是对称轴(写)。 通过对称和非对称的直观比较,学生的动手操作、和我的适时引导。把美术图形和数学教学有机的整合起来,有利于培养学生的动手操作能力和观察概括能力。
为了帮助学生突破本节课的教学难点,我再一次让学生动起手来,让学生拿出自己的的几何图形,折一折、画一画,找出轴对称图形和它们的对称轴,而我,则积极参与到学生的活动中,重点指导容易判断错误的平行四边形,沿着平行四边形的对角线折,你发现了什么,圆的对称轴,沿着圆的任意一条直径对折,多试几次,你又发现了什么? 通过学生的动手操作,动眼观察,动脑思考和动口归纳充分调动了学生的各种感官参与学习,即发挥了学生学习的主动性,又培养了学生的发散性思维。
第三个环节 综合实践 学以致用
为了体现数学来源于生活。应用于生活的理念,我设计了三个层次的练习。首先,我安排的直观判断题把一些学生明天大量运用的字母,数字。汉子写在卡片上,只让学生观察,判断,进一步认识轴对称图形特点的认识。学生判断后我又引导学生品味中国文字的对称美,既弘扬了中华文化,又体现了数学课堂的德育功效。
接着,我又让学生用理论来指导实践,创造性地体验轴对称图形的特点。我先让学生独立创造一个从正面看身体的左右两侧是轴对称图形的姿势,学生充分发挥自己的创造性思维,摆出了各种呈轴对称图形的姿势。
而后,我又大胆建议让两位同学或三位同学共同组成一个轴对称图形。并鼓励其他同学做个小裁裁判,大胆的提出质疑。这样做,即激发了学生的合作意识,又培养了学生的空间想象能力和大胆质疑的品质。
最后,我开展了一个小小设计家的活动,我先利用网络资源向学生展示具有轴对称性质的各种建筑,天安门城楼、清真寺的门楼,汕头海湾大桥的门楼等等 , 通过信息网络,美术鉴赏和数学教学的3科整合,教会了学生获取信息的途径,引导学生学会欣赏美,然后,又利用学生热爱学校的情感,鼓励学生积极参加新校门的设计,做到学以致用!
练习的设计,从加深认识到体验创造再到拓展参与,逐层加深,培养了学生的创造性思维和合作意识,教学由课内向课外的延伸增加了学生应用实践的机会。
轴对称说课稿3
教案资料 《轴对称(第1课时)》教学设计
【教学目标】
1.知识与能力
(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2.过程与方法
通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3.情感、态度与价值观
通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】
轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】
轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高.
【教学用具】多媒体课件、直尺、剪刀和彩纸等
【教学过程】
一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形
我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.
问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).
(1)这些图形有什么共同的特征?
对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?
(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?
(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?
二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念
师生互动操作设计:
教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.
1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.
归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.
2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?
学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.
在学生交流的基础上,引导学生对轴对称的概念进行归纳.
把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:
轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.
轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.
轴对称说课稿4
各位评委:
大家好!今天我说课的题目是 《数学八年级上册12.2作轴对称图形 》,所选用的教材为人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将从课件中的资源整合的设计理念、教学策略、如何使用等方面进行展示和陈述。
一、教材分析
本节课的主要内容是作轴对称图形,要求学生能够作出简单图形经过一次或者两次轴对称得到的图形,能够利用轴对称进行简单的图案设计,所以在寻找资源的过程中,使用一些图片、动画等。前面的一节内容中学生认识了轴对称图形和两个图形关于某条直线对称,它们都是讲一个图形成或两个图形之间的位置关系,是一个静止的状态,我们选用的图片比较多。作轴对称图形是由一个图形得到与它轴对称的图形的过程,是一个运动的过程,所以在本节课的课件中,我将用动画去展示轴对称变换的过程。
二、学情分析
从心理特征来说,八年级阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,选取适当的教学资源,利用课件中好的视觉效果,如图片、动画、视频等,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要使用“班班通”的教学设备让学生参与到教学过程中来,让学生发表见解,发挥学生学习的主动性。
三、教学目标分析
本节课的教学目标为:
知识技能:
1、能按要求做出简单平面图形经过一次两次轴对称后的图形。
2、能利用轴对称进行图案设计。
过程与方法:
利用轴对称作图和图案设计。
情感态度价值观:
1、通过欣赏轴对称图案,形成学生了解数学、应用数学的态度。
2、通过作轴对称图形、设计图案,锻炼学生克服困难的意志,培养创新精神。
四、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:作轴对称图形。
难点确定为:利用轴对称设计图案。
五、教学方法分析
本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
六、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习旧知,温故知新
提问:1、轴对称图形的定义。2、两个图形关于直线对称的性质。
设计意图:用提问的方式,回顾上节课所学的内容,为后面作已知图形关于直线轴对称图形的方法提供理论基础。
(2) 创设情境,提出问题
先展示一组图片,这是中国民间的剪纸艺术,也是作轴对称图形生活中的运用。
课本中原先所画的并不是手印,而是选择作左脚印关于直线对称的图形,在课件的设计过程中,我选择了用手印来取代。因为我觉得学生可以利用左手直接画出手印,而画脚印本身难度就大多了。
通过画左手掌印,得到相应的右手掌印,让学生感受轴对称图形的形成过程,培养学生的动手能力。
同时,让学生明确:折痕所在的直线就是它们的对称轴。
再次展现一组图片,这些图形都是通过轴对称变换而得到的。其中,喇叭花图案除了可以运用轴对称变换得到,也可以通过平移得到。这时我运用PPT动画的形式来进行展示,让学生能体会到这一过程。
(3) 发现问题,探求新知
《一》轴对称变换
从上面图形的变换过程中,教师总结出轴对称变换的定义。
再展示一组变换,通过改变对称轴的位置,让学生体会得到图形有什么不同。这个设计过程先让小鸡嘴巴对着嘴巴,然后改变对称轴后,小鸡变成背靠背了。学生明白改变了对称轴的位置,得到的图形的方向和位置也会发生变化。
观察下面的图形,探求新知
通过动画的演示,学生和教师一起进行总结,课件中尽量把图案中的对应点突出来,让学生更容易得出结论。
《二》作轴对称图形
先作一点关于直线对称的图形。
然后再作一条线段关于直线对称的图形。
最后讲解例题。
在例题的课件设计中,每作出一点的对称点,应出现这个点的作法,这样学生就能明白作图的顺序。
这一部分内容,我进行了分步设问,便于引导学生理解作图方法。
通过教师演示课件,让学生体验作图的准确性和规范性。
通过归纳,让学生掌握做一般轴对称图形的方法。
(4)变式训练、巩固双基
由例题演变而成。
设计意图:变式训练及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(5) 小结归纳,拓展深化
学生自己总结,不全面的由其他学生补充完善,教师重点关注不同层次学生对本节知识的理解、掌握程度。
提炼对作轴对称图形的认识。全员参与,体现集体的智慧。
(7) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
本节课尽量创设与学生生活环境、知识背景相关的教学情境,以丰富的图片和动画形式呈现有关内容。重视动手操作,实践探究。总之,借助多媒体,把生活中的物体图形和轴对称结合起来,组织学生从生活中引入轴对称,充分引导学生自主探索、合作交流,让每一个学生在自主探索的过程中感受了数学与日常生活的紧密联系,体验了学习数学的快乐,有效的促进了师生之间、学生之间的共同发展,培养了学生的创新精神和实践能力。
轴对称说课稿5
一、说教材分析
1、教材的地位及作用
对称是数学中一个非常重要的概念,教科书分为轴对称和中心对称两部分讲述。“轴对称和轴对称图形”这一节是在学生小学学过对称的基础上,在学习等腰三角形的性质,以及线段垂直平分线的性质定理及逆定理前安排的一节内容。它是前面所学知识在生活中的应用,也是后面学习中心对称的重要的基础知识。通过本节课的教学,主要是训练学生初步的审美能力和初步的图案设计操作技能,拓展学生的想象能力。
因此,这一节课无论在知识上,还是对学生观察能力的培养上,都起着十分重要的作用。
2、教学目标
所授班级学生活泼好动,思维发散,归纳总结能力弱。根据学生小学已有的认知基础及本课教材的地位、作用依据课标确定本课的教学目标为:
知识与能力:
①理解轴对称图形,两个图形关于某直线对称的概念.
②了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.
③了解轴对称图形与两个图形关于某直线对称的区别和联系.
过程与方法:
①通过学习轴对称图形和两个图形成轴对称,进一步认识几何图形的本质特征.(因为后面在研究很多几何图形和函数图像时,对称性是研究的重要方面。)
②通过学习轴对称图形和两个图形成轴对称的区别和联系,进一步发展学生抽象概括的能力.
情感、态度价值观:
通过轴对称图形和两个图形成轴对称的学习,让学生关注生活,学会观察,增强交流,激发学生学习欲望,主动参与数学学习活动.
3、教学重点:轴对称图形和两个图形关于某直线对称的概念.
难点:轴对称图形和两个图形关于某直线对称的区别和联系.
本节课的教学难点是正确区分轴对称与轴对称图形的两个不同概念,原因有两点:
(1)学生对轴对称图形比较熟悉,但往往不能够完全掌握它的定义;
(2)轴对称与轴对称图形的联系,体现了中学数学中的整体思想,需要学生有较强的思维能力,这对于初二学生来说有一定的难度。转换角度看待事物也是学生今后处事必备的。
二、说教学方法与教材处理
鉴于教材特点和学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用教具、学具,在实验、演示、操作、观察、练习等师生的共同活动引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意利用图片的不同颜色的对比来启发学生,运用投影仪提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识。
三、说教学程序
1、创设情境
首先,为学生展示多幅彩色图片,为学生创设优美的学习情境,根据学生好动、好奇、好问的心理特征,设置悬念:它们很漂亮、美观吗?激发学生的兴趣。让学生感受轴对称图形的美观,并进一步设问:它们美在何处?它们有何共同特征?让学生通过观察,比较发现,这些图形都具有对称美。通过设问和学生发现的结果,揭示课题—本节课学习轴对称图形。
2、动手操作
在引入课题的基础上,讲授新知识,运用教具演示,并让学生观察老师手中的纸蝴蝶,并根据观察总结轴对称图形的定义和性质。让学生通过实验、观察,引导学生发现轴对称图形定义中的两点:一是它是一个图形能沿某一直线折叠。二是直线两旁的部分互相重合,并把这两个特征作为判断轴对称图形的标准,有几条直线,就有几条对称轴(投影显示轴对称图形的定义)。
前面已经分析过,正确区分轴对称与轴对图形这两种不同的概念是本节课中学生学习的难点,因此,我抓住突破难点的关键。一、加强学生对轴对称图形定义的理解;二、通过复习轴对称的定义,引导学生找出定义中的不同点;三是利用投影的直观演示,启发学生分析讨论,从而使难点化解,并在化解难点的过程中培养学生的思维能力。
具体做法是:在强化学生在理解轴对称图形定义的基础上,引导学生复习轴对称定义中的两点:①有两个图形,能够完全重合即形状大小都相同:②对重合的方式有限制,也就是它们的位置关系必须满足一个条件:把它们沿某一直线对折后,能够重合。然后引导学生把两种不同概念中的两点加以对比,学生便容易发现轴对称和轴对称图形的区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形。(2)轴对称涉及两个图形,轴对称图形是对于一个图形而言的。
那么如何理解轴对称与轴对称图形有何联系呢?这是学生学习的又一个难点。此时,便利用PPt演示双喜字,画好对称轴的轴对称与轴对称图形,学生们会发现:如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,(投影显示区别与联系)。
3、联系实际,加强训练
为了及时巩固,帮助学生对所学知识予以消化吸收,首先联系学生学习实际,让学生辨认熟悉的几何图形和较复杂的标识、图画,其次设计了有梯度的训练题,初步了解学生对知识的理解,掌握情况。
4、发挥想象,感受对称美
通过本节课的观察实验,学生们发现了生活中很多轴对称图形非常美丽,请同学们发挥想象。这样,使学生所学知识得以升华,让学生真切体会到:数学使我们的生活变得更加美丽,生活处处离不开数学,从而体现学习数学的价值,激发其强烈的学习情感。最后通过配乐欣赏生活和自然界中的轴对称,让学生站在更高层次上欣赏对称美,感受对称美。
5、课后反思
(1)因课堂主要内容都在板书中,所以学生小结很顺利的说出了课堂主要收获。这说明课堂对学生归纳总结能力的训练有效果。
(2)利用双喜字让学生理解轴对称图形和两个图形轴对称的联系,化解难点。
(3)所有学生都对轴对称概念有了一定认识、理解,程度较好的学生对轴对称的性质有了初步发现和想法,这在下一节性质的教学中得到了体现。
(4)学生归纳概念训练不够。第一个概念是有老师引导得到的,第二个概念可由学生自己模仿总结得出,但老师不放心,还是引导得出的。
轴对称说课稿6
一、说教材。
1、说课内容:
九年义务教育人教版课标实验教材《数学》第三册第五单元第二小节p68页《美丽的轴对称图形》。
2、教材的编写意图:
教材在编排上,按照知识引入——概念教学——知识应用的顺序逐步展开的,体现了知识的形成过程。教材借助于生活中的实例和学生的操作活动如观察、剪一剪、画一画等,帮助学生发展空间观念,层次分明,循序渐进地指导学生认识自然界和日常生活中具有轴对称性质的事物,使学生进一步认识前面所学的平面图形的本质特征,了解对称在生活中的应用性,体验生活中的数学美,并学会欣赏数学美。
3、教学目的:根据课标的要求和教材的特点,结合二年级学生的实际水平,本节课可确定如下教学目标:
1、使学生初步认识轴对称图形,知道轴对称图形的含义。
2、能够找出轴对称图形的对称轴。
3、能将轴对称图形的知识用到实践中去,培养学生运用知识的能力。
教学重点:使学生知道轴对称图形的含义,并了解轴对称图形的特征。
教学难点:1、了解轴对称图形的特征;2、找出轴对称图形的对称轴。
二、说教法。
整节课,我根据教材和学生认知特点,设计了五个大的活动。让学生在活动中体验对称、感悟对称、理解对称、并且在欣赏的活动中体验对称美。
第一个活动是让学生在情境中初步感知对称。让学生欣赏蜻蜓、蝴蝶、脸谱等常见的对称图形。并动画演示对称,初步对称。
第二个活动,设计的是动手折一折,在折一折中体验对称图形的特点,对对称、对称图形有一个直观的了解,并知道对称图形的折痕就是它的对称轴。
第三个活动,在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。
第四个活动, 设计的是让学生“找一找”、“画一 画”,在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,同时让学生感受到生活中到处都有对称,到处都有对称的事物。同时画出对称轴。
第五个活动,是让学生动手画一画对称轴,进一步理解对称及对称图形的特点,接着,出示正方形、长方形、和圆,让学生找对称轴,由于可找很多条对称轴,让学生感悟到同一个物体有不同的对称轴,感觉到对称的奥妙。
三、说学法指导。
本课遵循了概念教学的规律,指导学生观察、操作、引导概括,获取新知;引导学生运用自主、合作、探究的三维学习方式进行探究性学习。教学中创设操作、实验、探究的机会,把学习过程中学生的发现、探究、研究活动凸显出来,使学习过程更多的成为学生提出问题、分析问题、解决问题的过程,让学生在开放性的自主活动中求发展。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
四、说教学程序
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了五个主要的教学程序是:(一)引趣激情,导入新课。(二)指导观察,认识特点。(三)综合练习,加深认识。(四)拓展知识,发展思维。
五、有待探讨之处
第一个困惑:关于对称轴是用虚线还是实线?
关于这个问题,大家争论比较大,本册教材上是用虚线,而到了高段,两种线都可以。于是我请教了几个在小数教学方面比较有影响的论坛上的朋友,想听听大家对这个问题的看法。大家意见并不统一,但都认为对称轴不是真实的线,是人们为了方便找出对称点以便作出图形虚拟的,而初中八年级的教科书上也是以虚线的形式出现的。当然,论坛上的交流不能作为教学的依据,但也是一种思路的启示。我个人还是比较倾向于虚线,因此在教学时还是以教材为准,认为是虚线。
第二个困惑的是,人民币中的一元硬币,是不是对称图形?
这个争论也比较大,我在这节课上正好没碰到,但在练习和检测中还是碰到了。如果只看外形,它是一个标准的圆,那么它就是对称图形,但若看里面的图案,则又不对称了。很困惑,请各位同事指点!
轴对称说课稿7
一、教材分析
1、地位。本课内容是北师大版七年级下册第七章第3节内容,在此之前学生已学了《简单的轴对称图形》,对轴对称图形已有初步认识。这节课承接前面的内容,是对轴对称的性质进行探索。从本章教材的编排体系看,由丰富的现实情景中的轴对称现象→简单轴对称图形的认识→本节探索轴对称图形的性质→利用轴对称性质进行图形、图案设计,它属于中间环节,也是比较重要的一节内容。本节知识的落实,为后续学科知识的学习及计算机辅助平面设计打下基础。
2、目标。本课时的教学目标:
(1)知识技能目标:通过探索,理解轴对称的两条基本性质(对应点所连的线段被对称轴垂直平分;对应线段相等,对应角相等),并会利用性质完成简单的轴对称图形。
(2)过程目标:经历探索轴对称的性质的过程,并体验探索过程中的成功感受;经历图形欣赏与相关数学思考;经历信息技术与数学学科整合的活动过程。
这两个目标是根据新课程标准,结合教材内容及学生现有数学基础确定的。
3、重点、难点。本课时教学重点是:对轴对称的性质的理解。难点是运用几何画板探索轴对称的性质。
二、教法探讨
1、教学策略上,以信息技术与数学学科整合的思想为指导,采用了:提出问题→自主探索→交流讨论→归纳总结的方式。因为这节课本身就是一节探究性课,这种方式有利于培养学生良好的思维习惯和探索能力。
2、思维活动组织上,采取了:任务驱动→问题情景→猜想验证→得出结论以及从个别到一般概括的方法,这样做的目的是顺应学生的认知规律来更好地掌握知识,培养能力。
3、教学信息的呈现上,以学生熟悉的感知材料为基础,采用了大屏幕投影,把信息清晰、准确地传递给每位学生。图形图象的呈现采用动静结合的方法,图形由静到动的变化体现数据变化的过程中几何关系的不变性,使学生加深对所研究对象的理解。这一点是传统教学所不能实现的。
4、教具、媒体的使用,选择了多媒体教室,这是基于两方面的原因:(1)基于教材。新教材倡导运用多种方式探索图形的性质。课本通过对折扎孔的办法探索轴对称的性质,这是从“形”的角度来理解的,能否通过度量从“数”的角度对轴对称的性质进行定量分析呢?想到了使用国际上比较流行的数学软件──几何画板。(2)基于教法。教法中提到了让学生自主探索(猜想、验证)等手段来解决问题,而电脑正好为我们提供了一个非常方便、精确的实验平台,用它可以准确测量每一条线段的长度和角的大小,并自动呈现结果,方便我们利用数值来探究图形性质。
三、学法指导
本节课主要是想通过“形”和“数”两种不同的角度来说明问题的。对于从实际问题中测量出的“数值”,学生更认可它的客观性和真实性,因此分析对象的数量关系尤为重要。基于这样的考虑本节课采用了几何画板来探究图形的性质。
教学中通过对两种不同的图形以及动态图形的探索、验证,强调了图形性质的客观性、真实性,从而突出重点。
练习设计中采取先示例,后学生操作的方法是为了分散难点。
四、整节教学程序的设计
从学生的年龄、心理特征出发,首先用一幅动态的轴对称图案展示给学生,使他们感受到数学的美,激发学生学习兴趣和求知欲望,接着通过学生生活中熟知的材料,引出问题,然后引导学生寻求解决问题的途径,再通过反馈训练,进一步巩固所学知识,最后归纳总结完成本节教学任务。
以上是自己对本节课的教学构思和理解,不足之处敬请各位专家批评指正!
轴对称说课稿8
尊敬的各位专家、评委老师:
下午好,我是来自,我将要说课的课题是苏教版小学数学三年级下册《轴对称图形》,希望我的展示能给各位留下美好的印象。
我的说课就以下六个方面进行解说。
一.教材分析
教材从学生熟悉的生活情境入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的轴对称现象,认识简单的轴对称图形。
二.轴对称现象是学生新接触的一个知识点。学习这部分的知识,需要学生具备一定的观察能力、动手操作能力和空间想象能力,而根据三年级学生空间想象能力不足以及语言表达能力的较弱的具体学情,教师在教学时必须要充分借助多媒体信息技术的直观演示,来调动学生的各种感官,丰富学生对轴对称图形的认识,感受数学与生活的密切联系。
过度(基于以上分析,我确定以下三维教学目标,再确定教学重难点,停顿)
(为了更好的达成三维目标,突破教学重难点,我借助多媒体采取以下教学策略)
三教学流程
(一)探究轴对称图形特征
1. 感受对称美,激发学习情趣。
生活中的对称现象学生早就有一定的认识,但如何激发学生学习的积极情感呢?上课伊始,我充分借助多媒体,将一幅幅学生熟悉的美丽轴对称图片带入课堂,(播放教学视频)优美音乐、精美画面以及教师激情解说,将学生带入了现实生活,使学生充分感受生活中的对称美,学生在感受到美的同时提出疑问:(播放)瞬间激发了学生的学习热情:从而引入本节课的研究主题:轴对称图形。
探究特征
学生在美中的提出了问题,该如何解决这些问题成为本节课的重点。在此我借助多媒体分两个层次进行教学
(1)由对称物体到对称图形
我先利用课件出示具有同样特征的三幅实物图,然后将实物图描画下来得到图形。此时学生产生疑问,得到的平面图形还是对称的吗?
(2)探究特征
于是学生想办法动手折这三幅平面图形进行验证,然后讨论交流这些平面图形是否是对称的?使学生初步感轴对称图形的特征,之后我用多媒体演示三幅平面图的对折过程(播放),再一次让学生深刻感知这些图形对折后两部分能完全重合,通过学生动手操作验证、教师多媒体直观演示,学生顺利的总结出轴对称图形的概念:对折后能完全重合的图形是轴对称图形,并认识了对称轴。从而有效的突破了教学重点,并且培养了学生的动手操作能力和空间想象能力。
3辨别轴对称图形
掌握辨别轴对称图形的方法是本节课的难点,通过前面的学习,对于一些简单的平面图形学生已经能做出准确的判断,但对于平行四边形学生很容易出错,我先让学生对平行四边形进行对折,然后借助多媒体对平行四边形进行不同角度的对折,有效的帮助学生对完全重合有了更直观深刻的理解,很清晰的让学生知道这个平行四边形为什么不是轴对称图形。五边形的课件演示,帮助学生进行知识的拓展,使学生知道有的轴对称图像可以有多种对折方法。
判断轴对称图形的练习,学生先动手尝试判断,之后课件加以演示,很清晰很直观的帮助学生掌握辨别轴对称图形的方法,从而有效的突破了本课的教学难点,并且培养了学生的验证意识。
二.激情创作
学习到此,我利用课件播放优美音乐,为学生创造做轴对称图形的良好氛围,孩子们激情创作的画面将课堂的学习推向了高潮,培养了孩子们的创造能力和创新精神。
三.画轴对称图形。
画,对于学生来说,难度比较大,我先让学生在方格纸上独立尝试,然后进行交流,之后我利用课件直观动态的演示,归纳出找对应点和连线两大步骤。 如果此过程只说不演示则太空洞、太抽象,而通过多媒体的演示达到了最佳效果。有效的解决了学生的困难。
四.总结
让学生带着本节课的收获再次欣赏课始精美图片。然后再让学生说出在此欣赏图片的感受,之后我提炼性的总结,使学生将视野延伸到生活当中,更加激发学生对美的渴望和创造美的欲望!
整个教学设计首尾呼应,浑然一体。
五、教学反思
多媒体信息技术的应用,将抽象的轴对称现象变得具体,将静态的轴对称图形以动态演示、验证,从而高效的突破本课的教学重难点,让学生在美得情境中快乐学习!
轴对称说课稿9
1教学目标
①探索并理解对应点所连的线段被对称轴垂直平分的性质.
②探索并理解线段垂直平分线的两个性质.
③通过观察、实验、猜测、验证与交流等数学活动,初步形成数学学习的方法.
④在数学学习的活动中,养成良好的思维品质.
2学情分析
学生学习了轴对称的定义后,进一步对轴对称的性质进行探索。
3重点难点
重点:图形轴对称的性质和线段垂直平分线的性质.
难点:由线段垂直平分线的两个性质得出的“点的集合”的描述.
4教学过程
4.1 教学活动 活动1【导入】轴对称
提出问题
1.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.
注:由于本课知识的教学是建立在上一节内容的基础之上,所以安排了两个复习的问题,为问题3的提出做好准备.
2.如果两个图形成轴对称,那么这两个图形有什么关系?(如下图,△ABC和△A'B'C'关于直线MN对称)
3.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C的对称点,线段AA'、BB'、CC'与直线MN有什么关系?
注:提出问题3并不要求学生马上回答,而是为下一步的探究作准备,如果学生凭观察得出猜测,那么可以通过下一步的实验进行验证.
实验探究
1.折一折.
要解决问题3,我们可以从最简单的一个点开始:先将一张纸对折,用圆规在纸上穿一个孔,然后再把纸展开,记两个孔的位置为点A和点A',折痕为直线MN(如图3).显然,此时点A和点A'关于直线MN对称.连结点A,A',交直线MN于点P.
注:这里采用让学生动手折一折,目的是让学生在折纸中体验对称性.先选取一个点进行实验,一是解决一个点,就解决了其他的点,二是从简单入手分析问题本身是我们处理和解决问题的一种手段.
2.说一说.
观察图形,线段AA'与直线MN有怎样的位置关系?你能说明理由吗?
(让学生能说出如下关系:AP=PA',∠MPA=∠MPA'=90°)
类似地,点B与点B',点C与点C'是否也有同样的关系?你能用语言归纳上述发现的规律吗?
(对称轴所在的直线经过对称点所连线段的中点,并且垂直于这条线段)
注:在这个基础上,教师给出垂直平分线的概念,然后把上述规律概括成图形轴对称的性质(教科书第121页)
3.想一想.
上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢?
(结合教科书第121页的图12.1-5让学生说明)
从而得出:类似地,轴对称图形的对称轴,是任何一对对应点连线的垂直平分线.
注:从折一折到说一说、想一想,其意图是把这个教学过程设计成让学生主动地参与进来,转变以往的学习方式.
合作探究
探究一:教科书第121页的“探究”.
学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB,再画出它的垂直平分线MN,在MN上任意取点P1,P2,P3(如图4),分别量一量点P1,P2,P3到A与B的距离,你有什么发现?你能说明理由吗?请与同伴交流.
处理方式:要求学生在独立尝试、独立思考的基础上进行合作交流,然后小组汇报.学生可以量一量、折一折,也可以运用第十三章的知识证明三角形全等.
在学生充分讨论的基础上归纳出:
线段垂直平分线上的点与这条线段两个端点的距离相等.
注:合作与交流是目前课堂教学中比较缺乏的一种教学方式,在教学中应创造条件引导学生积极参与,同时教师应组织好,引导好.把垂直平分线的性质与全等三角形的知识结合起来,既能复习以往的知识,又能使新知识得到应用,便于加深对新知识的理解和掌握.
想一想:如图5,我们在教科书第99页的练习1中,应用三角形全等的知识说明了CB=CB,你能运用今天所学的知识给出解释吗?
问题:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?
探究二:如图6,PA=PB,取线段AB的中点O,连结PO,PO与AB有怎样的位置关系?
注:由于教科书第122页上的探究活动实际上是这样的一个数学问题:“如图6,已知OA=OB,PA,PB满足什么条件时,OP⊥AB?”这与上述命题的逆命题不完全一致,所以本设计改用直接的数学问题.
学生可以运用三角形全等的知识判定△PAO≌△PBO,从而有∠POA=∠POB=90°,于是PO⊥AB,即PO是线段AB的垂直平分线.从而得出:
与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
归纳结论:见教科书第122页的最后一段话.
(注意:应该从正逆两个角度,结合具体的图形进行归纳)
教科书第122页的最后一段话比较抽象,以教师讲解为主,可以结合角平分线的性质.
处理方式:在教师的引导下,由学生讲述解题方法,教师给出解题过程.
3.练习:教科书第123页.
小结提高
让学生从以下几方面去思考:
1.本节课你学到了什么?
(1)从知识上:一个概念(线段的垂直平分线),四条性质(轴对称图形的性质、垂直平分线的性质);
(2)从方法上:合作探究是数学学习的一种重要方法,数学与实际问题的联系.
2.轴对称图形的性质与线段垂直平分线的性质之间的联系;在解决问题的过程中所看到的新旧知识之间的联系(如全等三角形).
作业布置
1.必做题:教科书第125页第3题,第126页第5、9题.
2.选做题:教科书第126页第11题,第127页第12题.
3.备选题:
(1)图8是某跨河大桥的斜拉索,图中PA=PB,PO⊥AB,则必有AO=BO,为什么?
(2)如图9,△ABC中,AC=16cm,DE为AB的垂直平分线,△BCE的周长为26cm,求BC的长.
(3)有A、B、C三个村庄(如图10),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.
13.1 轴对称
课时设计 课堂实录
13.1 轴对称
1 教学活动 活动1【导入】轴对称
提出问题
1.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.
注:由于本课知识的教学是建立在上一节内容的基础之上,所以安排了两个复习的问题,为问题3的提出做好准备.
2.如果两个图形成轴对称,那么这两个图形有什么关系?(如下图,△ABC和△A'B'C'关于直线MN对称)
3.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C的对称点,线段AA'、BB'、CC'与直线MN有什么关系?
注:提出问题3并不要求学生马上回答,而是为下一步的探究作准备,如果学生凭观察得出猜测,那么可以通过下一步的实验进行验证.
实验探究
1.折一折.
要解决问题3,我们可以从最简单的一个点开始:先将一张纸对折,用圆规在纸上穿一个孔,然后再把纸展开,记两个孔的位置为点A和点A',折痕为直线MN(如图3).显然,此时点A和点A'关于直线MN对称.连结点A,A',交直线MN于点P.
注:这里采用让学生动手折一折,目的是让学生在折纸中体验对称性.先选取一个点进行实验,一是解决一个点,就解决了其他的点,二是从简单入手分析问题本身是我们处理和解决问题的一种手段.
2.说一说.
观察图形,线段AA'与直线MN有怎样的位置关系?你能说明理由吗?
(让学生能说出如下关系:AP=PA',∠MPA=∠MPA'=90°)
类似地,点B与点B',点C与点C'是否也有同样的关系?你能用语言归纳上述发现的规律吗?
(对称轴所在的直线经过对称点所连线段的中点,并且垂直于这条线段)
注:在这个基础上,教师给出垂直平分线的概念,然后把上述规律概括成图形轴对称的性质(教科书第121页)
3.想一想.
上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢?
(结合教科书第121页的图12.1-5让学生说明)
从而得出:类似地,轴对称图形的对称轴,是任何一对对应点连线的垂直平分线.
注:从折一折到说一说、想一想,其意图是把这个教学过程设计成让学生主动地参与进来,转变以往的学习方式.
合作探究
探究一:教科书第121页的“探究”.
学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB,再画出它的垂直平分线MN,在MN上任意取点P1,P2,P3(如图4),分别量一量点P1,P2,P3到A与B的距离,你有什么发现?你能说明理由吗?请与同伴交流.
处理方式:要求学生在独立尝试、独立思考的基础上进行合作交流,然后小组汇报.学生可以量一量、折一折,也可以运用第十三章的知识证明三角形全等.
在学生充分讨论的基础上归纳出:
线段垂直平分线上的点与这条线段两个端点的距离相等.
注:合作与交流是目前课堂教学中比较缺乏的一种教学方式,在教学中应创造条件引导学生积极参与,同时教师应组织好,引导好.把垂直平分线的性质与全等三角形的知识结合起来,既能复习以往的知识,又能使新知识得到应用,便于加深对新知识的理解和掌握.
想一想:如图5,我们在教科书第99页的练习1中,应用三角形全等的知识说明了CB=CB,你能运用今天所学的知识给出解释吗?
问题:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?
探究二:如图6,PA=PB,取线段AB的中点O,连结PO,PO与AB有怎样的位置关系?
注:由于教科书第122页上的探究活动实际上是这样的一个数学问题:“如图6,已知OA=OB,PA,PB满足什么条件时,OP⊥AB?”这与上述命题的逆命题不完全一致,所以本设计改用直接的数学问题.
学生可以运用三角形全等的知识判定△PAO≌△PBO,从而有∠POA=∠POB=90°,于是PO⊥AB,即PO是线段AB的垂直平分线.从而得出:
与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
归纳结论:见教科书第122页的最后一段话.
(注意:应该从正逆两个角度,结合具体的图形进行归纳)
教科书第122页的最后一段话比较抽象,以教师讲解为主,可以结合角平分线的性质.
处理方式:在教师的引导下,由学生讲述解题方法,教师给出解题过程.
3.练习:教科书第123页.
小结提高
让学生从以下几方面去思考:
1.本节课你学到了什么?
(1)从知识上:一个概念(线段的垂直平分线),四条性质(轴对称图形的性质、垂直平分线的性质);
(2)从方法上:合作探究是数学学习的一种重要方法,数学与实际问题的联系.
2.轴对称图形的性质与线段垂直平分线的性质之间的联系;在解决问题的过程中所看到的新旧知识之间的联系(如全等三角形).
作业布置
1.必做题:教科书第125页第3题,第126页第5、9题.
2.选做题:教科书第126页第11题,第127页第12题.
3.备选题:
(1)图8是某跨河大桥的斜拉索,图中PA=PB,PO⊥AB,则必有AO=BO,为什么?
(2)如图9,△ABC中,AC=16cm,DE为AB的垂直平分线,△BCE的周长为26cm,求BC的长.
(3)有A、B、C三个村庄(如图10),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.
轴对称说课稿10
尊敬的各位评委老师:今天我说课的内容是人教版小学四年级数学下册第七单元《轴对称》,下面我从说教材、说教法、说学法、说教学流程、说板书设计几个方面对本课时的教学进行阐述。
一、说教材
《轴对称》这堂课是人教版版义务教育课程标准实验教材小学数学四年级下册第七单元的第一课。这部分教学内容在《新数学课程标准》中属于“空间与图形”领域的知识。经过前面的学习,学生已经认识了轴对称,知道了轴对称的特点,本课将进一步学习轴对称,教材注意创设情景,从学生已有的知识和经验出发,适时的提出疑问,并引导学生探究和发现,同时启发学生进行思考。
这部分知识主要是对轴对称图形的再认识,要求学生掌握对称轴的画法和在方格纸上画出轴对称图形另一半的步骤,也是今后进一步学习图形方面知识的基础。
根据这一部分教学内容在教材中的地位与作用,结合教材以及学生的年龄特点,我制定以下教学目标:
第一点,知识技能:使学生通过生活中的实例进一步理解轴对称图形,探索轴对称图形的特征;能用“折叠”“重合”这样的词语准确的描述出轴对称图形的特征;能识别轴对称图形并能确定它的对称轴;能在方格纸上画出一个轴对称图形的另一半。
第二点,数学思考与问题解决:在丰富的现实情境中,让学生经历观察分析、欣赏想象、操作发现等数学活动过程,提高学生的空间想象能力和思维能力,发展其空间观念。
第三点,情感态度:在活动中培养学生的合作探索、交流反思的意识。体会轴对称在现实生活中的广泛存在性,学会用世界的眼光来观察、感受数学的应用价值、文化价值和美学价值。
本课的教学重点是:能识别轴对称图形并能确定它的对称轴,能在方格纸上画出一个轴对称图形的另外一半;探索轴对称图形的特征。
教学难点是:掌握轴对称图形的特征和性质。
二、说教法
课堂教学首先是情感成长的过程,然后才是知识成长的过程。
学生的学习过程是一个主动构建、动态形成的过程,教师要激活学生的原有经验,激发学生的学习热情,让学生在经历、体验和运用中真正感悟新知。数学学习过程理应成为学生享受教师服务的过程。
因此,根据教学内容的特点,为了更好地突出重点、突破难点,按照学生的认知规律,遵循教师为主导、学生为主体、训练为主线的指导思想。我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅的教学方法。在教学中我注意创设情景,设计启发性思考问题,引导学生思考。并适时运用电教媒体化静为动,让学生更直观地学到知识,从而激发学生探究知识的欲望,使学生始终处于主动探究问题的积极状态,培养学生的思维能力。
三、说学法
四年级的学生生动活泼、富有好胜心理,并且大部分学生已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此,在这节课中我将根据自主性和差异性原则,让学生在探究学习的过程中,自主参与知识的发生、发展和形成过程,使学生掌握知识。达到人人学数学的目的。给学生充足的空间,开展探究性学习,让他们进行独立思考,并与同伴交流,亲身经历提出问题、解决问题的过程,为学生创设一个轻松愉快的学习环境,易于学生积极主动获得新知并体会学习的乐趣。并且我根据教材内容自制的多媒体课件以及图画纸等教具。
四、说教学过程
为了突出教学重点、突破教学难点,达到已定的教学目标,我安排了以下四个教学环节,即:复习铺垫——探究新知——练习巩固——总结反思。
第一环节:复习铺垫。
首先,我用PPT展示旅游景点引出轴对称。接着引导学生认真观察,提出有关的数学问题。教师指出本课要重点研究的问题是:(什么样的图形叫做轴对称图形)
[本环节的设计意图:精彩的开头,不仅能使学生很快由抵制状态进入兴奋状态,还能使学生把知识的学习当成自我需要,使教学任务顺利完成。在这个环节中,我从学生日常的旅游引入,更接近学生生活,更能让学生接受,从而激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮]
第二环节:探究新知。
本环节我设计了以下几个教学活动。
活动一:让学生尝试说哪些是轴对称图形,并点名让学生动手对折,继而在学生总结时给出轴对称的定义。
活动二:让学生动手尝试画对称轴后,自己动手在书本上画,在察看学生完成情况时及时纠正。
活动三:出示两幅表格上的图让学生判别轴对称图形后,让学生尝试在表格上画出轴对称图形另一半后,进行步骤总结。
[本环节的设计意图是:《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我前后组织学生进行了几次自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识;让学生在体验成功的同时也掌握和体会数学的学习方法。让学生在探究活动中,实现自主体验,获得自主发展。]
第三环节:练习巩固。
本环节我依据教学目标和学生在学习中存在的问题,设计有针对性的练习题组(画图题、判断题、连线题)。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
我先让学生在总结画图步骤后进行一次作图,及时进行巩固;接着让学生画出常规多边形的对称轴,让学生明白有的图形对称轴可能会很多;但我又担心学生搞不清平行四边形和任意三角形不是轴对称图形,设计了两道判断题;紧接着又让学生从轴对称一半想象整个图形,从整个轴对称图形想象其一半,从生活实际出发,又锻炼了学生的想象力。在最后我设计了一道一张纸多次折叠后能剪出什么图形的题型,目的是为了锻炼学生想象能力,又有简单的引导语将学生的抽象思维表象化,发展了学生的数学思维。
[本环节的设计意图是:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。]
第四环节:总结反思。
这一环节,我利用课件展示以下两个问题:
(1)今天你学会了什么?
(2)你还有什么疑惑?
(3)你感觉自己今天表现如何?
让每位学生充分发言,交流学习所得。
在评价方面:先让学生自评,接着让学生互评,最后教师表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
[本环节的设计意图是:通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。]
八、说板书设计。
在教学中我把黑板分为两部分,把知识要点写在左侧,画图等练习则在右边进行。科学的板书设计往往对学生全面理解学习内容,提高学习效率,起到事半功倍的作用。
轴 对 称
对折后完全重合
1、找关键点? 2、标对应点 3、顺次连线
我今天的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。
九、说教学反思。
整节课的安排,努力贯彻“学生为主体、教师为主导”学生自主发展的教育原则。教师只是对概念的引入加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考;操作、联想;讨论、口述,这样将有利于每位学生积极动脑、动手、动口、耳闻、目睹,各种器官并用,使全体学生真正成为学习活动的主人
不足之处:学生在画轴对称图形时,不按照画法去做,而是照葫芦画瓢按照自己的方法去画,虽然有的同学能画对,但是也存在个别学生出现错误的画法。再教设计:强化画轴对称图形的画法,让学生不仅要知其然还有知其所以然,明白不仅仅画对就可以,还要知道依据轴对称图形的性质,这样才能加深对轴对称图形性质的理解。
以上是我对轴对称这部分知识的分析与教学设计。由于时间短促,有很多不当之处,希望各位评委老师多加批评指正,我的说课到此结束。谢谢大家!
轴对称说课稿11
各位领导、专家、评委、老师们:
今天我展示的课题是《轴对称变换》,这是八年级数学<上册>第十四章《轴对称》第二节的内容。这节课分两个课时,我展示的是第一课时。
在初中的教学实践当中,我崇尚并践行这样的教学理念:①数学来源于现实,存在于现实,且应用于现实,数学教师的任务之一就是帮助学生构造现实,把现实“数学化”,积极引导学生通过探索、实践、思考,获得知识,形成技能,发展思维,学会学习。②数学教学要面向全体学生,努力实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
在这样理念的指导下,我对教材进行了详细的分析。
(首先)(一)教材的地位和作用
“轴对称变换”是一种“翻折变换”,而“翻折变换”是“全等变换”的一种,所以这节课的内容可以看作是前面学习的“全等变换”的延续;再者,教材把这节内容安排在“轴对称”概念、性质及垂直平分线性质定理等知识之后,进一步体现了轴对称的应用价值和丰富内涵,同时也为下阶段进一步探索等腰三角形的性质,学习它的判定方法作铺垫。通过这节课的学习,让学生体验了数学在生活中的广泛应用,培养学生在实际生活中“动眼-动手-动脑”的学习习惯。
根据教材的地位和作用,我确定了如下的教学目标。
(二)教学目标
1.知识目标:通过具体的实例认识轴对称变换,了解它的定义和基本性质,能按要求作出简单平面图形经过一次或两次轴对称变换后的图形,能够利用轴对称变换进行简单的图案设计。
2.能力目标:用轴对称变换的方式去认识和构建几何图形,发展形象思维,并尝试用轴对称变换从事推理活动。
3.情感目标:结合教学内容,让学生体会数学来源于生活,数学美化生活,数学是我们生活中不可缺少的一部分,并培养学生空间想象能力,动手实践能力,以及善于合作、勇于创新的精神。
(三)教学重、难点
教学重点:轴对称变换及轴对称作图;
教学难点:利用轴对称变换构建几何图形;
经过前面的分析,我对本节课的教学过程进行如下的.设计。
数学教学是活动的教学,因此整个教学过程我从四个环节来入手:(我总结了四个字)
巧——学——妙——得
首先:创设情境,说明数学在生活中的巧妙应用,展示数学魅力;
接着:学习生活中提炼的新知识,拓宽学习视野;
然后:延伸知识的内涵,发散思维,提高能力档次;
最后:总结提高,获取知识宝藏。
根据大赛组委会的要求,我把这节课进行了录像。时间关系,今天我只能把这节课的重点和亮点——“妙”“得”这两个环节用视频展示给大家,和大家共同探讨。前面的“巧”“学”两个环节我作简单的介绍。
首先,我从生活中创设情境,通过欣赏一系列精美的轴对称图片,让学生感受到数学来源于生活,数学美化生活,数学是我们生活中不可缺少的一部分。然后,我提出问题“如何剪‘囍’字”,让学生体会到数学学习的内容是现实的、有意义的,富有挑战性的;再来,我结合课本中的例子“如何在一张纸上画一对脚印”引入今天的课题——“轴对称变换”。
接着,我介绍了“轴对称变换”的概念。在概念的教学当中,我注重讲得准确到位。
我们知道,轴对称变换是图形的一种运动法则,是一个平面图形沿着某条直线按一定的运动方式得到另一个图形的过程。它运动的结果,就是前后两个图形关于这条直线成轴对称,或者得到一个轴对称图形。
课堂上,我和学生一起分析了“轴对称变换”的特点——轴对称变换是一种翻折变换,而翻折变换是我们前面学习过的全等变换的一种,所以轴对称变换是全等变换,在变换过程中图形的形状、大小没有发生变化。
紧接着,我教授学生一项基本的作图技能——作出简单平面图形经过一次或两次轴对称变换后的图形。我通过课本例题“作出与△ABC关于直线L成轴对称的图形”这道题的讲解和配套完成这道练习来实现这个教学目标。这是本节课的一个重点。
介绍完基本的知识和技能之后,我利用“轴对称变换”设计了一系列的思考探索题,引导学生“自主探究”,把“学数学”上升到“用数学”,从而更好体会一些重要的数学思想方法。这是本节课的重点、难点、亮点。这部分我通过视频给大家展示,请大家欣赏。
<插话>停顿 !
00:39~01:18 这环节我利用轴对称变换构建几何图形,让学生参与数学知识的发生、发展过程,体会“观察——猜想——实验——思考——总结”的有效学习策略,培养学生空间想象能力和动手实践能力。请欣赏。
05:52~06:55 现在,学生们看到了轴对称变换的应用,他们兴趣盎然。我再通过变换“裁剪位置”和“折叠方式”,让学生进一步巩固刚才所学的知识。学生们可以采用动手实验的方法,也可以运用逆向思维进行空间想象得到答案,我们鼓励不同的学生采用不同的方法,这样他们都会得到提高。
08:58 (视频停顿) 这里,我们看到了,学生们对轴对称变换的应用已经有了一定的体会;动手实践给他们带来直观的感受,空间想象、逆向思维让他们对数学知识的认识又上了一个新的台阶。下面,我将进一步引导学生发散思维,体验数学学习的探索性和创造性。请继续欣赏。
10:24~12:13 我们知道,数学当中,一点点的变化,就会产生不同的结果。所以,我对前面的思考题进行适当的变化,既让学生体会到数学的奇妙应用,同时也培养学生养成“动眼—动手—动脑”的学习习惯。请欣赏。
14:31~16:55 在教学当中,我注重体现学生学习方式的转变,充分发挥学生的主体作用和教师的主导作用,积极探索符合课改精神的教学模式。我采用分组教学,鼓励学生积极参与数学问题的讨论,让学生体会到交流合作的乐趣。
18:47~(视频停顿)这里,我引导学生从不同的角度思考问题,让他们发现,不同的变换顺序,裁剪的位置是不一样的。接下来我引导学生回到开头提出的问题“如何剪‘囍’字”,让学生体会“提出问题——分析问题——学习新知识和技能——解决问题”的有效策略,这进一步体现了课改的理念:让学生在动手实践中不断丰富解决问题的策略,提高解决问题的能力。请看屏幕。
不同的学生会有不同的体会,但相信他们在这节课当中都有收获。接下来,我布置了
作业。作业布置既要能巩固所学知识,又要能培养学生利用所学知识进行再创造的能力。因此,我布置了一道利用“轴对称变换”设计图形的作业,让学生自由发挥,充分展现他们的聪明才智。这也符合本节的教学目标。
最后,我想说的是,作为一名普通的中学数学教师,我希望学生们能在轻松愉快的环境中学数学,这样他们才会爱上数学,愿意学数学。著名作家冰心曾说过:只要有了爱,就有了一切。为了这个目标,我“衣带渐宽终不悔,甘为数学消得人憔悴!
谢谢大家。
轴对称说课稿12
说课内容:
青岛版小学数学第五册第三单元信息窗
教学目标:
1、联系生活中的事例,认识轴对称图形的基本特征;会判断一个图形是不是轴对称图形,并能画出对称轴。
2、在动手操作、观察思考等活动中,发展空间观念,提高观察能力和动手操作能力。
3、在认识、欣赏和制作轴对称图形的过程中,感受对称美,培养审美意识。
教学重点:
认识轴对称图形,并能指出对称轴。
教学难点:
掌握判断对称轴图形的方法。
教学准备:
课件、学生自备一组平面图形、剪刀、彩纸、尺子
教法学法:
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,并运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
根据学法指导自主性和差异性原则,让学生在观察一操作一概括一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
教学过程:
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了四个主要的教学程序是
(一)观图激趣,导入新课。
(二)指导观察,认识特点。
(三)多项拓展,巩固升华。
(四)综合练习,发展思维。
说课过程:
一、观图激趣、导入新课。
老师出去旅游的时候,拍了一些照片回来,一块和同学们欣赏一下。
(课件展示)。
师:看到这些照片你发现它们有什么共同的特点?
师:通过观察发现这些图片都有一个共同的特点,左右两边都一样,象这样的图形就是对称图形。(板书:对称)导入新课。
二、指导观察,认识特点。
1、如何验证这些图片就是对称图形呢?
学生拿出自己准备好的图片(课本后面剪下的图形)
小组为单位进行讨论。
师:谁来把你的发现说给大家听。给大家演示一下。看看他的发现和你的一样吗?
学生动手操作。
师:对,对折后两边的图案也是一模一样的,这又是一个发现。通过看一看折一折这个活动,我们发现这些图形对折后外边缘能完全重合,里面的图案也一样,数学上我们把具有这种特征的图形叫对称图
2、探究验证轴对称图形的方法。课件出示:五星红旗。
我们一起看看这个图形是对称图形吗?师生共同验证。通过以上学习,同学们总结一下什么样的才是对称图形?
师:同学们对对称图形的特征掌握的特别好,能根据它的特征正确判断是不是对称图形。
课件出示:各个国家的国旗,学生判断哪个是对称图形?为什么?
3、认识对称轴
师:这条线是折出来的痕迹,所以叫折痕。折痕所在的直线叫对称轴。(板书并齐读一遍)
师:找一找你手中图形的对称轴,画出它的对称轴,展示给大家看。
强调:沿直尺画虚线。
师:画对称轴时,先怎么样?
生:先对折,在沿折痕画出对称轴。
师:通过以上探究,同学们对对称图形有了明确的认识,这些对折后能完全重合的图形全称叫轴对称图形。(板书:轴)齐读一遍让学生深刻的认识了折痕,折痕将对称图形分成了两部分,对称是以折痕为中心线进行的,强化了学生对折痕的认识】
三、多项拓展,巩固升华。
1、通过操作得知:正方形、长方形、等腰三角形、等腰梯形和圆都是轴对称图形。接着指导学生从不同方向折一折,看各有几条对称轴。根据学生的汇报教师逐个演示操作过程。重点指导折圆的对称轴。并启发学生说出:圆有无数条对称轴,圆的对称轴就是本圆的直径。
在操作中,学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既发挥了学生学习的主动性,又培养了学生的发散性思维】
2、课件出示
3、说说生活中的轴对称图形,看谁说的多?
通过学生学过和熟悉的数字和汉字入手,判断其是否是轴对称图形,体现对称和轴对称图形在生活中的许多地方都存在。师生共同品味中国文字的对称美,从而宏扬中国文化,做到知识性、技能性、思想性和艺术性溶为一体。
这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边在我们的生活中有许多对称的物体,有的是大自然的对称现象,有的是人们受到对称的启发,创造出了许多对称美的物体,下面让我们到奇妙的对称世界去感受一下。
师:欣赏完了,你有什么感受啊?
(感受大自然的美)
4、刚才我们欣赏到了对称的美,那你能利用你手中的彩纸剪出你喜欢的对称图形吗?
(展示欣赏)
四、课堂总结,深化主题。
今天和同学们一起感受了对称世界的神奇和美丽,课后,希望同学们利用所学知识创造出更多美丽的对称图形,去美化我们的环境,装扮我们的家园。
轴对称说课稿13
一、授课内容的数学本质与教学目标定位
教学内容:
本节课是北师大版教材七年级(下)第七章《生活中的轴对称》第二节“简单的轴对称图形”的第一课时.主要内容是经历探索简单图形轴对称性的过程,进一步体验轴对称图形的特征,并由此探索了解角平分线的有关性质,应用角平分线的性质解决一些简单问题.
教学目标:
●知识与技能:
(1)进一步认识轴对称图形的特点,认识角是轴对称图形;
(2)探索并了解角平分线的有关性质;
(3)能应用角平分线的性质解决一些简单的问题.
●过程与方法:
(1)在探索角平分线性质的过程中,培养学生观察、思考、分析和概括的能力;
(2)在动手操作的活动中,通过说理,培养学生运用数学语言进行表述的能力;
(3)通过学习进一步理解由“特殊”到“ 一般”的数学思想.
●情感与态度:
(1)通过轴对称图形的教学进行审美教育,让学生充分感受数学美,从而激发学生热爱数学的情感;
(2)通过探究活动培养学生团结协作的精神.
二、教材的地位及作用
本节教材是在学生对轴对称现象有了一定认识,能够识别简单的轴对称图形及其对称轴的基础上,经历探索的过程,掌握角平分线的有关性质,为以后学习其他轴对称图形(矩形、正方形、菱形等)知识奠定必要的基础.
三、教学诊断分析
1.在学习有关角的对称轴是角平分线所在直线的时候,学生常常将角平分线理解成角的对称轴,因此,在本节课的教学过程中作了特别强调;
2.运用角平分线的性质解决问题时,学生常常会运用全等将角平分线的性质再证明一次,而没有直接使用角平分线的性质,简化证明过程,因此,在本节课通过例题及巩固练习,加深学生对角平分线性质的运用.
四、教学设计说明
1.根据新课程课堂教学理念“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验” .本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和生生、师生互动交流,从而使学生能很好地掌握角平分线的性质,并获得用折纸这样的操作发现法探究图形性质的活动经验.
2.在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况(学生比较优秀),因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练中学会运用角平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”的数学课程基本理念.
3.本节课在教法上选用了“探究——发现”教学模式,这是基于本节课的知识内容,有实践背景,适用于让学生动手操作探究.因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:①动手活动:通过动手度量、折纸等活动,探索角平分线的性质;②表述活动:用文字语言、图形语言、符号语言表述角平分线的性质,并互动说理证明;③应用活动:角平分线的性质的认识及应用;④拓展活动:结合本节课的知识,对线段的轴对称性进行探索.
4.教材中只给出了角平分线的性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理,因此在这里,我引导学生将文字语言结合图形语言转化为符号语言,并且对性质进行了说理,同时在对性质说理以及例1的解答中,教师都给出了规范的说理过程,这样既符合学生的实际学习情况,又为后面学习证明(一)、(二)、(三)打下基础.
5.评价方式
根据课标的评价理念,教学中我关注了学生在学习过程中是否积极参与教学活动,是否能在教师的引导下进行说理,是否能应用所学知识来解决实际问题,并注意在教学过程中给予学生适当的评价和鼓励.
轴对称说课稿14
一、把握课标说教材
(一)教材所处的地位及作用
本节课是在学生感受了现实生活中的轴对称图形,探索并体验了轴对称图形的特征的基础上进一步认识简单的轴对称图形——线段,主要学习线段的轴对称性,线段的垂直平分线定义及性质。既是对前面知识的深化和应用,又是后续画图形的对称轴和画轴对称图形的基础,还是今后探究等腰三角形、矩形、菱形、正方形等轴对称图形的性质的预备知识和方法指导。因此处于非常重要的位置,起到承前启后的作用。
(二)教学目标
1、知识与能力
知道线段是轴对称图形;掌握线段的垂直平分线定义及性质,学会应用线段垂直平分线的性质进行简单的计算和说理。
2、过程与方法
经历探索线段垂直平分线定义及性质的过程,体会数学活动充满了探索性和挑战性。
3、情感态度与价值观
经过自主探索和合作交流,敢于发表自己的观点,品尝发现的快乐,感受轴对称的对称美。
(三)教学重点和难点
由于线段是组成几何图形的基本元素,线段的垂直平分线定义又是画图形的对称轴和画轴对称图形的基础,加之线段的垂直平分线性质在几何图形和实践问题中应用较为广泛,因此本节课的教学重点是线段的垂直平分线定义及性质。难点是运用线段垂直平分线性质解决实践问题。
突破方式:1、通过设计问题情境,激发学生求知欲。
2、让学生亲自动手操作,参与知识形成过程,深化对知识的理解。
二、促进发展说教法
著名教育家布鲁纳说“探索是数学教学的生命线”,我结合学生心理发展特点及认识水平,充分体现教师是教学活动的组织者,引导者,合作者,学生才是学习的主体。基本的教学程序是:由“创设情境——活动探究——实践应用——课堂小结”四部分组成。在此程序中我将采用:情景与直观演示教学法,讨论法、练习法。
三、提高能力说学法
我将遵循学生的认知规律,充分发挥教师引导和学生认识活动的主体作用,通过多媒体演示、实物图例等实践活动充分调动学生积极性,给以学生动手、动脑的机会,变被动学习为主动学习,启导学生通过猜想、实验、讨论、分析出线段的对称轴特征,以及线段的对称轴上的点到线段两端点距离相等这一性质,以求学生通过实践活动深化知识,进一步理解所学知识。
四、优化组合说流程
课前准备:透明纸片、三角板、量角器、导学案
(一)创设情境,导入新课
1.欣赏:多媒体导入具有实际意义的轴对称现象。
2.体验:用纸片展示线段,观察它是不是轴对称图形。
(设计意图:通过对图片的展示,吸引学生的注意力,帮助学生复习旧知识,为本节课的知识做铺垫。同时也让学生的思维由静止状态转入活动状态。)
(二) 教师引导,探究新知
自主探究:线段的垂直平分线概念(全体活动)
1.动手操作:设计方案找线段的另一条对称轴。
2.讨论:观察对称轴与线段的位置关系。
3.明晰(多媒体展示学生们的发现):线段的垂直平分线概念。
引导探究:探究线段的垂直平分线性质(小组活动)。
1.动手操作(投影展示步骤):
(1)在线段AB的垂直平分线CD上任取一点P;(2)连接PA,PB。
2.讨论:在操作过程中,比较线段PA,PB。
3.明晰(多媒体展示学生们的发现):线段的垂直平分线性质。
(设计意图:本环节发挥教师的主导作用,设计困难,以疑促思,引导学生积极参加到探讨线段的垂直平分线定义及性质这一活动中来,锻炼学生主动学习的习惯,培养学生观察、想象思维和概括能力。)
(三)讲练结合,巩固提高
第一组:巩固训练
填空:
1.如图,若AO BO,EF AB,则直线EF是线段 的垂直平分线。
2.如图,已知直线CD垂直平分AB,则 , , 。
3.如图,△ABC中,AD垂直平分边BC,AB=5,那么AC= 。
(设计意图:这三道小题都是对刚学过的重点知识进行数学化语言的组织,让学生加深印象,体会数学语言的严谨性。)
第二组:强化训练
例1:如右图所示,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△BCE的周长。
变式演习:
1.已知:如图,在△ABC中,BC边上的垂直平分线DE交BC
于点D,交 AC于点E,AC=8 cm,△ABE的周长是14 cm,
求:AB的长.
2.如右图所示,直线MN和DE分别是线段 AB、BC的垂直平分线,
它们交于P点,请问PA和 PC相等吗?为什么?
解:连接BP
∵ MN垂直平分线段AB( 已知 )
∴ AP=BP ( )
(设计意图:意在让学生掌握本节课的知识和训练解题格式。)
第三组:拓展延伸
1.上罗中学和上罗一小计划在村公路上共同设一个心理咨询 中心,如图,A处是上罗中学,B处是上罗一小,直线L表示村公路,应在村公路L的何处设心理咨询中心,才能使心理咨询中心P到两校的长度相等?
2.随着我国经济、教育的发展,学前教育已经纳入九年制义务教育范围,为了让小朋友们能更方便的上学,上罗镇计划以三个村为一个范围建公立幼儿园,如图,A、B、C表示三个村的地理位置,问:幼儿园建在何处,才能使得到三个村的距离相等?请你作出幼儿园的位置(用P表示)。
(设计意图:这组题是针对本节课的难点设计的,设计为与学生们生活紧密相关的实践问题,让学生们自己当一会设计师,体验数学知识的应用价值。本组题的教法是:组内讨论,各组推选一名上台展示。)
(总设计意图:三组题型,从三个面,全方位的覆盖了本节课的重难点,意在让学生主动探索、讨论、提出质疑,并解决问题。教师从旁参与讨论,有针对性的启发和指导,鼓励他们提出疑问,鼓励他们团结合作,进而培养学生的创新意识与创新能力。)
(四)总结归纳,强化体系
1、引导学生从这节课“学了什么”、“如何学”、“为什么学”这几个方面进行反思。
(设计意图:让学生系统掌握本节课的知识点,培养学生的总结能力,感受数学的应用价值。)
2、作业布置:练习题第2题、习题10.2第3题。
(设计意图:巩固所学知识,强化知识体系。)
五、归纳总结说设计
本节课设计以新课改理念出发,进行教师主导,学生主体教学的探索,让学生去发现问题、解决问题。在探讨的过程中遵循从直观感知到理性认识的认知规律,循序渐进,引导学生深入探究问题的本质,尊重学生的个人体验,在活动中感悟数学知识的价值。
轴对称说课稿15
轴对称图形说课稿,是以国家颁布的中学教学大纲、课程标准和教师教学用书中所规定的各项要求为基本依据,以课堂教学实践为基础,对“轴对称图形”(人教版三年制初级中学几何第二册第三章第四单元等四节“轴对称和轴对称图形”第三课时)这一节课 “怎么教”和“为什么这样做”以及教学效果预估的评价与分析。
本说课稿以重视基础知识和基本技能的落实,重视学生能力的培养,特别是学生的创新精神和实践能力的培养为指导思想。主要从教材分析、教学方法和教材处理、教学程序及三点说明四个部分对本节课的设计进行说明:
第一部分是教材分析。
主要从教材的地位及作用、教学目标、教学重点与难点三个方面进行分析。
第二部分是教学方法与教材处理。
鉴于教材特点及初二学生模仿能力强,选用的是引导发现法,充分运用教具、学具、投影仪提高教学效率。关于教材处理从课后练习、例题、实践操作等方面作了补充说明。
第三部分是教学程序。
包括创设情境,动手操作,联系实际、加强训练,发挥现象、创造设计,效果评价与作业布置五大环节。
第四部分是三点说明:
1、板书设计;
2、时间的大体安排;
3、整个设计要突出体现的特色。