第一篇:人教版七年级数学上册《销售中的盈亏》的教学反思
最近,我在初一(4)班上了一节数学公开课,课题是《3.4实际问题与二元一次方程组》第二课时“销售中的盈亏”,本节课是探究课,在教学中我采用小组合作交流探究的教学方式,在老师的时事点评和引导下,让学生自己动手,动口,动脑,计算,归纳销售中的常用公式,力求体现自主,合作,探究式学习,让学生在“轻松,和谐”的课堂中高效完成本节学习任务。本节课我的教学过程主要分六个环节:第一,设计情境,激发学生学习兴趣,引入本节课课题;第二,尝试练习,熟悉公式;第三,探究销售中的盈亏问题;第四,小组展示,解决探究问题;第五,巩固练习,提升能力;第六,归纳总结销售问题中常见的四个量之间的关系提炼解决问题的方法。
反思本节课的教学,成功之处有:
1.设计情境,引入课题,体现教学来源于生活有服务于生活的理念,“汉滨初中对面的电脑城中销售一种路由器,先将进价提高20%,后再降20%出售,卖96元一台,问商家是盈是亏?”通过本问题,起到两个作用,一是引入课题,二是看待问题的方式不能只看表面而做出解答,必须用数量关系进行计算在做出判断。
2.精选练习,达到让学生熟悉公式的目的。
3.化解探究问题中的难点,把问题细化为6个小问题,便于小组分工合作,及时完成任务。
4.采用小组合作学习,充分展示学生探究问题的全过程。
5.在教学中能激励性的语言去鼓励学生大胆发言和展示,让学生在比较轻松和谐的课堂氛围中完成学习任务。
回顾本节课,我觉得在一些教学设计和教学过程中还存在着以下不足之处:
1.不能正确的把握各个环节的时间,为达到预期的学习效果。学生的语言表达能力和概括能力也有待进一步的提高。
2.在教学中未注重学生思维多样性的培养。我总担心学生说错,一开始就让学生沿着我预先想好的方向去思考,控制了学生的思维发展。
3.分层,分题组布置或推荐作业方面做的很不到位。
4.给学生思考问题的时间不充分,很急躁。
5.学生的参与度还有待进一步提高。
教师只有把学习的主动权交给学生,把思维的过程还给学生,使问题在分组讨论、合作交流中得以共同解决,才能把自主、合作、探究的新型学习方式落到实处,才能还课堂以本来的面目,学生是学习的主体,是课的堂的主体。
第二篇:七年级数学销售中的盈亏教案
3.4实际问题与一元一次方程
销售中的盈亏(探究1)
教学目标;
1、理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念。
2、能利用一元一次方程解决商品销售中的一些实际问题。
3、经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型。
4、培养学生走向社会,适应社会的能力。
教学重点;
掌握盈亏问题中的等量关系,运用方程解决实际问题
教学难点;如何把实际问题转化为数学问题,列方程解决实际问题
教学过程
一、讲授新课
商品销售中的几个概念: 1.成本价;购进商品时的价格(进价).2.标 价;在销售时标出的价(原价,定价).3.售 价;在销售商品时的售出价(成交价,卖出价).售价=标价×折扣
4.利 润;在销售商品的过程中纯收入,即
利润=售价-成本价=进价×利润率
5.利润率;利润占成本价的百分率,即
利润售价-进价利润率=100%=100%
进价进价6.打 折;卖货时,按照标价乘以十分之几或百分之几十,则称将标价进行了几折.例如某种服装打8折即按标价的百分之八十出售.二、练习
① 安踏运动鞋打八折后是220元,则标价是
元。
② 进价为80元的篮球,买了120元,利润是
元,利润率是
元。③ 一种商品标价为ɑ元,打九折后售价为
元。
④ 某商品每件利润是72元,进价是120元,则该商品的售价是
元。
三、探究
问题:一商店以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? 解:设盈利25%的衣服进价为x元,则
x+25%x=60
解得
x= 48.设亏损25%的衣服的进价为y元,则
y-25%y=60
解得
y= 80.两件衣服的进价为 x+y=128(元)
两件衣服的售价为60+60=120元
因为
进价>售价
所以 买这两件衣服总的是亏损。
三、巩固练习
1、一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以 60元卖出,这批夹克每件成本是多元?老板是亏了还是赚了?赚了多少?
2、某商品的标价为每件900元,为了参与市场竞争,商品按表标价的9折在让利40元销售,此时可获利10%,此商品的进价是多少元?
3、某种商品的进价为400元,标价为600元,打折后利润率为5%,那么此商品是打几折出售的?
4、某种商品因换季打折出售,如果按标价的七五折出售将赔25元,而按标价的九折出售将赚20元,问这种商品的标价为多少元?
四、课堂小结
本节课我们利用一元一次方程来解决商品销售中的一些实际问题,要解决商品销售的利润率问题类型的应用题,首先要弄清商品利润、商品进价、售价、标价,打折的意义,以及它们之间的关系.然后分析题目中的数量关系,找出能表示题目全部意义的相等关系,根据这个相等关系列出方程,求出方程的解后,一定要检验解的合理性。
五、布置作业
课堂作业:课本P10练习第1题
第三篇:七年级数学上册教学反思
七年级数学上册教学反思
谭春燕
初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。
现的初二学生中,有一部分同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加辅导班来弥补的。这个问题究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题:
1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;
5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点; 怎样才能打好初一的数学基础呢?(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
(2)总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初
二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
(3)收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。(4)就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
(5)注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
第四篇:七年级数学上册教学反思
七年级数学上册教学反思
张北县第二中学范俊慧
《整式》这节课作为本章起始课显得尤其很重要,核心概念是单项式与多项式的概念,及由此归纳出的整式的的概念.这也是本节课教学重点.通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,及“转化”的思想方法,由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性.
在教学中我注意发挥本节内容整式承前启后的作用,在小学,学生们已经学习了用字母代替数,列代数式表示现实世界中简单的数量关系、根据数量关系列方程和解方程,有了这些基本知识,学生已经对整式具有了一定的感性认识.但在学习本课重点----单项式的概念,系数和次数,理解多项式的概念和正确确定多项式的次数和项数这些新出现的概念与名词时特别要处理好本课教学难点:①系数是负数或分数时的情形.系数为圆周率②多项式的次数和项的次数混淆.我在本节课堂教学采用“情境—问题—探究—反思—提高”课堂结构,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程.通过观察课件的演示,让学生分组讨论、交流、总结,由学生自主发表意见.
本课主要的教法为:学生在“可探索”的教学情境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、主动发展.
本课学生学法为:主动探究——自学议论----自主总结——主动提高.
①计算机辅助教学②小组合作讨论式等教学两种方式.
设计的问题,激发学生学习兴趣,引导学生开展积极主动的数学思维;如何根据学生实际提供适度的学习指导;如何安排变式训练和知识应用,巩固知识,加深对数学本质的理解;如何安排反思活动,引导学生归纳、总结并概括本堂课的学习内容.本节课容量偏大,给学生思考时间应适当。
第五篇:七年级数学上册教学反思
八年级数学下册教学反思
贾运国
我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为X,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(AB为⊙O的直径,C为⊙O上的一点,AD和过C点的切线互相垂直,垂足为D。求证:AC平分∠DAB)通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思 有这样一个曾刊载于《中小学数学》初中(教师)版2004年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?,A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:„„,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:(1)请分别指出(—2)2,—22,—2-2,2-2的意义;(2)请辨析下列各式:
① a2+a2=a4 ②a4÷a2=a4÷2=a2 ③-a3 ·(-a)2 =(-a)3+2 =-a5 ④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2 解后笔者便引导学生进行反思小结.
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。