第一篇:关于系统柔性性能的论文
摘要:在日益激烈的市场竞争中,柔性被认为是企业竞争力的主要决定因素之一。
由于供应链管理概念的提出,商业社会意识到柔性的概念应该从单个制造系统拓展到供应链系统。
文章讨论了柔性的概念及类型,探讨了供应链柔性的定义及其作用,指出供应链柔性的概念及定量研究还处于初始阶段。
另外,文章给出了提高供应链柔性的一些途径。
关键词:柔性,供应链,制造,系统一、柔性的概念及其类型
现代生产企业都处在竞争十分激烈、需求多样化以及多变的市场环境之中,企业能不能对市场环境变化作出相应灵敏的反应,将决定企业的发展前途和命运。
同时,企业也应能够适应企业内部的一些变化因素的影响。
因此,企业需要不断增强自己的技术水平、管理水平以及人员素质等,才能在市场竞争中生存下来,并不断成长壮大。
所以,柔性技术就成为许多企业的战略目标之一,许多文献把柔性同成本、质量、技术等同时并列为企业的战略核心领域。
在过去,市场需求比较平稳,企业生产的产品品种也比较单一,产品的生产周期和生产提前期都比较长,对柔性的要求也就不高。
然而,对许多制造企业来说,这一切都发生了巨大的变化。
为了有效地消化市场需求的波动,并利用现有设备和技术更快地生产和开发新的产品,是一个关系到企业在市场竞争中立于不败之地的重大课题,正是这种情况使人们对柔性技术的研究产生了极大的兴趣。
关于柔性的一般定义,现在还在不断的探索之中,现有的有关柔性的定义,往往只适合于某一特定的方面或领域,目前还没有明确的共识。
在较早前的研究中,有人将其定义为“制造系统适应因环境变化或由于环境变化引起的一系列变化的能力”,或将制造柔性称为,企业轻便快捷地应对市场条件变化的能力。
从企业内部作业层面出发,可以定义柔性为,企业系统适应相关因素(如产品、制程、负荷、机床故障等)变化的能力。
但是,一个更加综合性的柔性定义可能是,企业以在时间、精力、成本或企业运行性能等方面较小的代价,而作出快速反应或改变的能力。
本文倾向认为,企业柔性定义为企业对外部变化和内部变化的适应能力,它能使企业保持较高的竞争力和较好的经济效益。
企业对外界环境和内部因素等变化的适应能力,是受企业自身的生产条件决定的。
要提高企业的整体柔性水平,企业需要提高譬如人员、生产组织、机器设备、加工工艺、组织结构、产品开发等方面的柔性水平,也就是说,这些因素能使企业适应多样化、多变的生产要求,易于调整和转换。
例如,在企业内部采用高效率的数控机床、培养企业人员掌握多种技术、采用团队工作方式等。
度量柔性的数量方法很多,例如路径分析模型、信息模型、决策理论、财务分析等等,不一而足。
本文认为,企业柔性水平的衡量,应该建立在提高企业现在及将来的经济效益上,不能给企业带来经济效益的柔性,没有多大意义。
事实上,相关的研究也支持这一观点,表明柔性越强,并不一定始终意味着更多的经济效益,特别是当产品经济规模较大时更是如此。
因此,如果企业没有一个关于生产方面的清晰战略指引,那么新的制造技术可能成为因解决柔性问题而付出的昂贵代价。
度量柔性一般可以用时间或成本来作为度量指标。
由于成本较难估计,并且在市场竞争条件下,产品价格由市场竞争决定,所以最小的成本也就意味着最大的利润。
因此,以经济效益作为评判柔性的重要指标,是必须且可行的。
有关企业柔性的种类,有许多划分方法,一般包括机器柔性、工序柔性、产品柔性、市场柔性、组织柔性、人员柔性等等。
关于工序柔性的定义,本文认为工序柔性是企业生产单元处理机器故障而继续完成给定加工任务的能力。
设机床可靠性是指机床在给定的一个时间点正常运行的概率,为了定量工序柔性,可以将机床可靠性引入到了工序柔性模型当中。
机床柔性的一种定义是机床柔性是指机床在一系列给定的加工部件之间作出加工类型变换的容易程度。
产品柔性是企业快速高效率地生产、开发多品种、不同数量产品的能力。
市场柔性则是企业适应市场环境变化,保持企业正常平稳运行的能力。
组织柔性是企业为适应环境变化,克服组织结构可能发生变化的能力,而人员柔性则是人员能够适应多种工作的能力。
信息技术对系统柔性的有着重要的影响,本文着重加以讨论。
信息技术对企业组织的柔性贡献主要体现在三个方面,即信息技术改变或模糊了企业组织的边界,改变了工作时间和组织间的联系时间;改变了工作的性质和节奏;帮助企业对变化的市场环境作出快速反应。
各类不同的信息技术能够使作业因可以采用灵活的方法而增强企业的柔性。
例如,个人计算机系统、第四代语言(4GL)、电子商务技术等可以建立比以往更加灵活的工作、计划、决策模型,而面向对象技术也提供了一种有效手段处理企业柔性需求和不确定的未来。
信息技术对企业的影响并不完全局限在企业内部,它可以使企业与外界的联系更加快捷,提高了企业的竞争能力。
信息系统的采用能够提高企业柔性以适应新的竞争环境,信息系统使企业与商业伙伴的联系更加灵活多样,使企业间的信息交换更加快捷,从而增强企业的整体柔性。
二、供应链系统的柔性
在过去几十年的中,有关柔性的研究都是站在单个制造企业的角度来研究的。
随着供应链管理概念的提出,人们意识到只研究单个制造系统的柔性是不够的,必须扩展到供应链系统。
柔性的提高需要供应链中各组织间数据信息的共享和协作,尽管供应链系统柔性的研究很重要,到目前为止,这方面的研究文献还非常有限。
为了研究供应链柔性模型,关于供应链系统内部柔性的划分,Ducos等人考虑了六个方面的柔性,即生产系统、市场、配送、采购、组织和信息系统。
Swafford等人则认为,供应链系统柔性由四个方面的柔性决定:产品开发、采购、制造和配送。
他们给出了供应链整体柔性的定义,即供应链系统能够以最小的时间和最小的成本适应市场的变化,并提供市场所需的产品和服务的能力。
供应链系统柔性可以从四个方面加以考察:采购柔性、产品开发柔性、制造柔性和配送柔性。
采购柔性是指供应链系统根据顾客需求,改变产品供应而重构供应链的能力。
产品开发柔性是指供应链系统能够低成本、快速地开发各种新产品设计,并灵活配置相关资源的能力。
制造柔性指低成本、快速地生产不同类型、不同数量的产品的能力。
配送柔性指低成本、快速地配送不同类型、不同数量的产品的能力。
在现有非常有限的供应链系统的柔性研究中,定性讨论讨论较多。
对于供应链系统柔性的定量研究,定量研究方法多为模拟、加权评价法等,完整而系统地采用数学模型对供应链系统整体柔性作出定量和说明,这方面的研究基本上还是空白。
供应链系统的整体柔性定量模型的建立,可以对供应链系统整体柔性作出定量化解释,以及帮助供应链系统作出柔性方面的决策,使系统而准确地评价供应链系统的总体性能成为可能,同时经济性模型的建立,为供应链系统总体柔性决策及柔性改造提供决策评判的基础。
三、供应链柔性的作用及管理措施
供应链柔性的作用体现在如下几个方面:
(1)产品生命周期。
供应链系统的柔性越强,那么供应链系统就能够在短时间内以低成本的方式实现新产品的开发,保证新产品开发所需物料的供应及其它保障,从而使系统能够适应市场较短的产品生命周期的要求。
(2)产品种类。
如果供应链系统能够实现多种产品和多种产品组合的生产,无疑使供应链系统更能适应市场需求的变化,提高系统的竞争力。
(3)顾客需求不匹配。
顾客需求在数量、品种、质量、时间等要求方面往往不一致,柔性较强的供应链系统,就能较好地处理这些问题。
(4)零部件多样性。
柔性较强的供应链系统,能在较短时间内、低成本地实现不同零部件之间的加工转换。
(5)工艺复杂性。
柔性较强的供应链系统能够处理复杂多样的工艺处理要求,能够高效率地实现加工过程的优化。
(6)采购不确定性。
消除和适应原材料采购的不确定性是供应链系统稳定运行的关键因素之一,供应链系统的柔性越强,就能够很好地保证原材料的供应。
(7)其它方面。
例如,配送过程的复杂性、人员的变动及调配、机床加工的可靠性等等,较高的柔性就可以快速低成本地克服供应链系统内部、外部各种因素的变化带来的不确定性。
提高供应链柔性应采取如下措施:(1)提高供应链系统的管理水平,应用现代化的管理手段和方法。
例如,可以建立反映供应链柔性的系统优化模型,据此分析供应链系统的柔性水平,同时还可以分析供应链内外各不确定性的因素对系统整体柔性性能的影响,从而作出柔性改造决策。
(2)提高供应链系统的信息交换和处理水平,构建高效的电子商务信息处理系统。
建立柔性良好的供应链系统,高效率、运行良好的ERP系统是必要的。
(3)提高人员的技术水平,培养多技能人才。
对单个人员来说,应加强人员的技能训练和培训,做到精通多种专业技能。
在具体生产业务活动中,努力采用团队的组织方式。
(4)提高设备技术水平,采用高效率的数控机床。
高效率的数控机床能够方便快捷地实现不同加工产品之间的转换。
(5)其它措施,如采用多供应商供应物料、设计良好的配送中心等等。
多个供应商供应物料,能够有效防止供应短缺的风险,设计及管理良好的配送中心能够实现产品的灵活、快捷的配送。
第二篇:柔性铸铁排水管的性能优势
常州新津唐金属材料有限公司-球墨铸铁管, 柔性铸铁管, 柔性铸铁排水管, 铸铁管厂家
柔性铸铁排水管的性能优势
来源:常州新津唐金属材料有限公司
与其他金属管材和塑料管材相比,铸铁排水管材具有一些独特的优点,主要体现在强度高、噪音低、寿命长、阻燃防火、柔性抗震、无二次污染、可再生循环利用等方面。
1、噪音低、强度高、寿命长
排水管的水流呈不充盈和重力流状态,摩擦、冲击、振动产生噪音在所难免。铸铁中的石墨对振动能起缓冲作用,阻止晶粒间的振动能的传递,并将振动能量转变为热能。所以铸铁管材具有很好的减震降噪性。试验资料表明,DN100管道流量为2.7L/s时,铸铁管的噪音值为46.5dB,U-PVC管的噪音值为58dB,故在要求安静的居住建筑、学校、医院、会场、宾馆等场合,宜选用铸铁排水管材。铸铁的抗拉、抗弯强度是常用塑料管材PVC的4倍。
铸铁的基体组织的电位差小、电化学作用小,同时含硅量高,能够在表面形成连续的SIO2保护膜,因此其耐锈蚀性能远高于钢材,在相同的环境、介质中铸铁的耐锈性是钢材的3倍以上。铸铁排水管材优良的耐腐蚀和强度特性,使其使用寿命远大于钢管和塑料管材。
2、柔性抗震
铸铁的线胀系数比较低,因而受环境温度影响自身产生伸缩量很小,同时铸铁排水管材的柔性接口结构,使其具有较高的抗伸缩、曲挠变形能力和抗震能力,系统轴向变形35mm、横向振动曲挠值31.5mm以内接口不渗漏。
3、耐高温,阻燃防火
排水管具有贯穿、连接各楼层和房间的特性,一旦发生火灾如若排水管材易熔、阻燃性差,很快融化破裂就会形成烟灶效应。铸铁管阻燃及高熔点是它有很好的防火阻燃性。
4、无二次污染,可再生循环使用
铸铁材质本身不含化学毒素,不会对污、废水产生二次污染,并且当建筑或排水管道保费拆除时,铸铁排水管材可100%回收再生,循环使用。
第三篇:柔性的丰田生产系统机制研究
最新【精品】范文 参考文献
专业论文
柔性的丰田生产系统机制研究
柔性的丰田生产系统机制研究
从系统论角度出发分析了丰田生产系统的输入、输出、要素及要素之间的联系,并以动物为对照探讨了丰田生产系统的柔性机制,指出了现代中国制造业企业生产系统存在的问题并对此进行了展望,以期能够引起当今中国制造业改革的思考。
柔性 丰田生产系统 系统论
一、背景介绍丰田生产方式是在石油危机爆发之后才开始逐渐引起社会关注的。二战后,日本的汽车工业普遍受到“多品种少批量”这个市场状况制约,丰田生产系统在这种环境下应运而生,是在吸收了福特生产方式精华的同时,结合了自己本国及世界大环境的背景发展起来的,其能够在经济低速增长的形势下具有很强的抗萧条能力确实值得我们的思考。而从系统论的角度来分析丰田生产系统会使我们更加清晰的看到丰田体系内部运行的机理,也会给我们提供一个丰田生产系统有别于其他生产系统的新视角。
二、系统论一般系统论创始人贝塔朗菲定义:“系统是相互联系相互作用的诸元素的综合体”。而系统的一般定义是:系统由相互联系、相互作用的若干要素构成的具有特定结构和功能的有机整体。在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。系统论的核心思想是系统的整体观念。任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体功能是各要素在孤立状态下所没有的性质。
三、丰田生产系统的整体分析系统论着重于研究系统的输入、输出、要素及要素之间的关系。在此基础上细致的研究丰田生产系统就会得出,丰田生产系统的输入为:实施者的意愿和能力、对TPS的正确认识、对TPS的适当应用及合适的客观环境。输出为:生产效率的提高、生产成本的降低以及从而导致的利润的增加。要素(或子系统)为:看板、准时化、自?化、均衡化、标准化、少人化、流水线、现
最新【精品】范文 参考文献
专业论文
场主义、质量管理、团队协作、需求导向、信息系统、目视化管理、五个为什么、重视人的作用等。而要素与要素之间的关系是“改善”,因为改善活动贯穿于丰田生产方式的始终,正是由于改善的存在使得丰田生产系统内部各个要素在发挥各自效应的同时,能够相互促进、相互融合,进而更好为丰田生产系统服务,使其的整体功能大于部分之和,即产生“1+1>2”的现象。系统论中的关系主要表现为要素与要素、要素与系统、系统与环境三方面的关系,而在丰田生产系统中我们着重研究的是其内部要素与要素之间的关系。例如,彻底的消除浪费降低成本是丰田生产系统的出发点,也是其最终的目标。而要实现这个结果就需要一个柔性的生产系统使能够快速准确的适应环境的变化,满足顾客的需求从而最大程度的降低浪费,于是准时化就用运而生。而看板作为支撑准时化实现的一个工具能够更加促进准时化的完成。看板本身也需要一定的实施条件,比如均衡化和作业的标准化。众所周知,准时化和自动化构成了丰田生产系统的两大支柱,而带有“イ”的“自?化”要求丰田生产系统要重视现场并注重人的作用。而全面质量管理、少人化、流水线等都是在以改善为大背景条件下相互作用,共同为促进丰田生产系统整体功能的实现发挥着自身不可或缺的作用的。
四、丰田生产系统的柔性机制
(一)自律神经――看板所具有的独立的微调机能在动物体内有着与意识无关而发挥作用的自律神经,这种神经即使没有大脑的指令也能无意识地进行调整,比如望梅止渴行为的产生。企业也应具有这样的自律神经。大野耐一在创建丰田生产方式时,就在寻求一种使丰田企业具有一定自律神经的方法。为降低在制品库存,创立了“准时化”思想,即只在必要时间生产必要数量的必要产品,利用看板拉动式生产,只向最后一道工序下达生产指令,这样使生产现场的库存自动调节到最低水平,极好地解决了在制品库存问题。
(二)反射神经――员工对生产现场发生状况的快速调整企业还必须具备反射神经,即信息不用一一传到大脑,在反射神经中枢就可以折回来,在一瞬间就能应付所出现的情况,例如动物所具有的缩手反射。企业越大越要把反射神经设置好,对于计划的微小变动,要做到无须大脑发令也能采取相应的行动。丰田企业通过运用
最新【精品】范文 参考文献
专业论文
“目视化管理”,并高效利用“准时化”和“自动化”这两根支柱,能更好地锻炼这种反射神经。“看板”、“多技能员工”、“团队互助精神”、按需求量制定的“生产节拍”,都在一定范围内自动地进行生产的微量调节。
(三)脊背的柔韧性――根据市场需求对生产计划的及时调整计划就如同人体的脊骨,越是结实的脊骨就能越好的弯曲,而这种弹性是非常重要的。生产计划不仅指为满足客户要求的三要素“交期、品质、成本”而计划,还指使企业获得适当利益,而对生产的三要素“材料、人员、机器设备”的确切准备、分配及使用的计划。丰田是从两个方面(每月的适应、每日的适应)来适应市场需求多样化的。通过每月和每日的适应使得准时生产仅能按销售的数量生产,从而迅速的适应市场需求的变化。
五、中国制造业企业生产系统存在的问题及展望要想在激烈的市场竞争中获胜,企业这一“动物系统”必须继续大力强化、完善自身的生产机制,TPS曾使丰田企业在80年代以其快速灵活的反应、低成本、多品种占领全球市场,但其成功的应用还需很高的企业管理条件,企业这一“动物系统”的完善仍存在许多问题。在我国企业生产系统缺乏竞争力是一个很重要的问题,这其中除了由于系统机器设备相对落后,人员素质相对偏低等客观因素外,主观因素的作用也不可低估。有关生产系统和生产管理的问题一直被视为技术或管理战术问题,而没有被置于战略的地位。在企业转轨变型过程中,生产系统被放在从属地位,企业只是想消除生产环节中的矛盾,而不寄希望于通过生产系统为竞争创造有利条件,致使生产系统难以发挥其应有的效用。如此的生产系统是难以适应当前复杂多变的竞争环境的,因此,对生产系统进行研究,并建立适合我国企业的生产系统评价体系已成为当务之急。
参考文献:
[1]大野耐一.Toyota Production System丰田生产方式.中国铁道出版社,2006.[2]顾培亮.系统分析与协调.天津大学出版社,1998.25-26.[3]
[美]杰弗里?莱克著.李芳龄译.丰田汽车案例――精益制造的14
最新【精品】范文 参考文献
专业论文
项管理原则.中国财政经济出版社,2004.[4]Monden Y.Toyota Production System,Industrial Engineering and Management press,1983.------------最新【精品】范文
第四篇:论文翻译——柔性超表面、超材料
柔性超表面和超材料:微、纳材料及其制备工艺
Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales Sumeet Walia,Charan M.Shah, Philipp Gutruf, Hussein Nili, Dibakar Roy Chowdhury, Withawat Withayachumnankul,Madhu Bhaskaran, and Sharath Sriram
三碗
译
摘要:使用柔性基板的超材料具备可弯曲、拉伸、旋转的特性,这为电磁波的控制提供了新的方向,并且为新功能和设计的研发提供了依据。本文综述了基于柔性可塑基板的THz、可见光频段的超材料及其加工技术,并且提及了设备的调谐方法。在论述加工工艺及处理技术之后,文章中给读者总结出了适合柔性超材料基板的电磁和机械特性,并提到了用于实现超材料可调谐性的新方法。把超材料变成可实际应用的设备已是大势所趋。
引言:超材料是一种亚波长工程结构的电磁材料,通过特殊设计,它可以展示出入射电磁波电磁的耦合。这让超材料具备了一些特性,比如异常反射及折射、完美吸波和亚波长聚焦等。但是,由于缺少稳定可靠的调谐技术,超材料广泛应用的脚步被长期的制约着。可协调性可以通过操作控制材料和入射波的交互作用来得到,以此来达到所需的波的传播、反射及吸收。尽管超材料设计的几何可测性给了超材料过去几十年的辉煌,如果所使用的材料是柔性的,对于t Hz方面的应用,如隐身、传感、超透镜(一种拥有在衍射极限下分辨率的透镜)、芯片上光子及光电子器件、完美吸波器和能量收集可以得到很好的改善。柔性器件依赖于较低的表面能量复合材料而实现,如聚二甲基硅氧烷橡胶,它可以粘附在一些等角的表面以便组合到弯曲的表面、表皮或者包装材料上面,而不仅仅是用在坚硬平整的面上。超材料的柔性表现可以使它来做有轻量透明要求的物体的包装。同样的,超材料的应用打开了一个新的篇章,如遥感技术、可调光学频率谐振器等。柔性也可以用来获得可调的超材料,这与材料基片特性紧密相关。另外,功能超材料与合适基片的结合,有望把t Hz阶超材料从二维设计带到三维结构上去。拥有柔性、可塑形基片的超材料也可以用在不平整的表面上。
如何有效拓展超材料这一优势,基片介电常数是关键。同时,超材料的这种结构可以调谐及加强波的传输或反射响应。同样地,将传统的微纳技术应用在这种柔性可塑形基片上也展现出很大的突破:造出了可以轻松放进人体的传感器、覆盖不平整表面的隐身层、负指数材料、生物分子传感器、等离子设备和吸波器。
关于这个主题的近期综述突出了超材料重要意义的发展潜力和合成技术的发展态势。刘等研究人员所发表的一篇关于亚波长超材料综述了亚波长可调谐超材料,它的可调谐性由机械形变和晶格位移而产生。同时,另外的文章也综述了基于近场耦合和非线性原理的应用的可调谐性。另外还有很好的文章包含了别的方面,如:设计、激励、超材料的机械形变以及可调谐能力的存在。然而,据我们所知,并没有一篇全面综述了柔性超材料基片特性、加工及调谐科技的文章。
本文论述了使用柔性可塑形基片来调谐超材料的谐振频率,批判地比较了各种应用了柔性基片和复合材料材料的电磁及机械特性,评估了包含近期3D方法在内的柔性超材料的精确制造技术。最后,展望未来,引出基于弹性材料的应用:调谐的可逆性。
超材料中的柔性基片
柔性基片给探索由机械形变引起的超材料特性提供了理想的平台。柔性材料在超材料中的应用所展示出的新功能引起了世界范围的关注。这种弹性基片之所以引起人们特别的兴趣在于它的可以通过机械形变而得到很大范围的频率调谐的特性,因此可以摒弃传统上为达到同样目的所需的外部激励和偏压。用在弹性基片上的共鸣器结构展示出对结构因子很高的敏感度,它可以对很小的尺寸改变而很容易做出响应。这种机械调谐超材料已被证实应用在了无线传感装置、生物分子传感装置及吸波器上。
在超材料中普遍应用的弹性基片是聚二甲基硅氧烷橡胶和聚酰亚胺,主要是因为它们在柔性电子方面的广泛应用。还有一些其他的柔性基片如Metaflex(使物体在较长波长中隐身)、聚乙烯萘、聚对苯二甲酸乙二醇脂、聚甲基丙烯酸甲脂和聚苯乙烯。
电磁特性
尽管超材料的电磁特性继承于亚波长谐振器的设计,但这也不排除超材料的成分对其的影响。为了优化超材料的电磁特性,基片的选取以以下要素为基准:1,低介电常数,用来维持谐振强度,形成宽带超材料;2,低吸收(吸收系数),使透过或沿着基片传播的波强度最大化。选用低的折射率可以减小基片上的反射损失。折射率n和介电常数ε有着密切的联系:n。一些常用复合材料基片的重要电磁特性展示在表1里面。
工艺和机械特性
复合材料可以提供广泛的可选特性来制备合适的、大面积的、低价的柔性超材料。各种各样的复合物基片被研究用来满足各种微波频率的弹性超材料的设计。通过旋转涂层、热处理、微加工技术等方法,这些弹性复合材料可以很轻易的加工出来,从而用于超材料基片的选择。微纳加工技术如光刻(接触式、可见光、软光刻和掩模光刻)、激光刻印、制模、铸造和转印都被证实已经用在基于复合材料的超材料中了,关于这一方面我们将在后面做更详细的讨论。
基片的机械特性(其杨氏模量为基准)对于确定它们在可机械调谐超材料的发展中的活性十分的关键。具有较低杨氏模量的基片可以承受更大的机械形变,具有很好的可逆性及可重复性,因此可以承担更基础的调制及更高要求的谐振模式。然而,制造工艺对于柔性基板的选择有着特殊的要求。这些要求中包含了高温沉积和退火的需求以及需要满足在高度平坦表面来进行光刻或者类似的刻图技术。表1中列出了一些对于超材料常用的复合材料基板的机械特性。基于实践应用和工作频率的机制,具有低吸收系数和期望的机械特性的柔性基板将会担当重任。
超材料制造工艺中的复合材料
在多种复合材料被利用的同时,有三种复合材料由于它们本身的特性而特别的受研究者的欢迎。这一部分我们将讨论这几种材料的主要特性及其限制。
聚二甲基硅氧烷
聚二甲基硅氧烷是一种弹性聚合物,有其独特的属性如低能表面、生物相容性以及良好的韧性和弹性。通常它的工作温度在-50到200摄氏度。作为一种柔软的柔性复合材料,聚二甲基硅氧烷可以很容易的与非平整表面结合,并且具有很高的一致性。它对传统的和像软光刻和压印这样的先进的微纳加工技术的兼容性更加的突出了它的优势。聚二甲基硅氧烷的-4-1比较低的杨氏模量(7.5*10GPa)和低的吸收率(13cm//1 THz)的特性让它成为了一种很适合柔性、可调谐超材料的基片。
它的高弹性的特性(最多达120%可逆的拉伸)使其成为实现超材料机械调谐的可行的一种基片。它独有的特性和比较宽波段的透明性让它可以满足超材料对宽带宽的应用。它的低能表面这一特性已经被用在有效的传输透明氧化物如氧化铟锡和氧化锌,它们展现出在很好的稳定性并且在氧化型可调谐超材料器件方面具有很好的潜质。在聚二甲基硅氧烷上压印结构材料的可能性为多层、3D超材料设计开辟了巨大机会,这一应用可以用来设计更加复杂的谐振装置。
-4o聚二甲基硅氧烷具有很高的热膨胀系数(TEC)3.1*10/C,这可以通过沉积金属薄膜 而确定谐振器或者波导是弯曲还是表面微皱。这种问题可以通过在沉积过程中精确控制样品温度或者对封装加同等的压力来改善。最近的一篇文章预测,这种自有序模式而在聚二甲基硅氧烷上形成的曲面金属膜将会在光学和应变分析设备中实现应用。
除去聚二甲基硅氧烷的一些可取的特性,它同样也遭受着对温度高灵敏特性(由于太大的TCE)的侵害,或许微小的温度变化就会引起超材料几何形状的改变。另外,当铺光刻胶时,聚二甲基硅氧烷的疏水特性会导致光条纹的出现,这就需要额外的处理(如等离子表面激活)来完成微工艺制备,特别是对于多层结构。
聚酰亚胺聚酰亚胺(得名于其商业特性聚酰亚胺薄膜)是一种在电子设备方面应用很普遍的柔性基板,比如柔性太阳能电池、内部连线和超材料。它们可以使超材料具备柔性、独立性的特点,工作在THz频率区间,具有很高的负折射率,且在双波段处实现近完美吸收。
聚酰亚胺的杨氏模量为2.5GPa(见表1),符合微加工技术的标准,它在制作柔性超材料方面的潜质源于其对金属表面很强的附着性,这种附着性也为其提供了很高的应变位移
oo度。通常聚酰亚胺的使用温度在-269C到400C,有很高的玻璃转化温度(见表1),这也让它可以接受金属在高温下的物理沉积技术,包括溅射技术、电子束蒸发沉积和脉冲沉积技术。另外,它本身具有较低的导热率,由此,即使是在很高的温度下,它也能和金属或氧化物具有很高的一致性。它对光刻胶有着强的粘附性,且在刻蚀金属薄膜时候可以抗酸的腐蚀,这种特性让它可以用于传统微加工技术制造THz超材料来提高图案刻印分辨率。然而,基于杨氏模量,它的弹性系数比较低(小于4%),这也限制了THz超材料的可调谐性,通过机
o械变形也可以略作改善。只有在高温(~400C)下聚酰亚胺才能与聚合物基体交联,这就给某些材料带来了复杂的因素。
聚对苯二甲酸乙二醇脂(PET)聚对苯二甲酸乙二醇脂是另一种已经被开发的柔性基板,它被用来做RFID的膜、LCD的显示器表层和电容式触摸传感器阵列。
o聚对苯二甲酸乙二醇脂具有较高的介电常数(2.86)、较宽的使用温度范围(-80C到o o180C)、较高的玻璃转化温度(78C)低的热膨胀系数、对光刻胶和金属有强的附着力,这些特性让它成为了制造柔性超材料的很好的选择(见表1)。PET薄膜在可见光范围是平面透明的,在THz范围它的电磁特性和PDMS及聚酰亚胺很相似。上述特性可见PET具有PDMS和聚酰亚胺的共同属性,但是并没有它们所具有的局限性。然而,PET的成本很高且易受到剪切热的影响。
总的来说,PET已经研究用来制造可以在近红外频谱使用的柔性结构,并且它是通过机械形变来调节的。
制造工艺
超材料的加工技术已经达到了很高的水准,可以在非常规基板上做微纳尺度的加工。高分辨率纳米加工方法的出现比如纳米光刻技术已经可以一次性使纳米图案刻在一个大范围的柔性基板上面,并且这促成了非常规超材料及光子系统的出现。随着对柔性材料上金属、电解质等硬质材料的深入理解,以及科技的进步,在多科学领域的交叉中实现了纳米尺寸在柔性延展设备上的使用。这种多学科技术在快速的综合发展,使那种可以实现宽的频谱可调谐的柔性超材料得以制造出来。这些技术使得电磁设备得到新的发展,也引发了感测领域中科学技术的更新。在图1中展示的就是一个典型的例子,它就是使用微细加工原理所制造的在THz频率工作的超材料。
介电常数 ε(0.2– 2.5)THz 2.35 材料 损耗因子tanɑ
吸收 系数 ɑ
电阻 欧姆(Ω)
杨氏模量E(Gpa)
使用温度 固化条件
玻璃化转变温度 Tg
综合评价
参数
聚二甲基硅氧烷 聚酰亚胺 聚对苯二甲酸乙二醇酯 聚乙烯萘 苯(并)二氮 聚甲基丙烯酸甲酯 聚丙烯 聚对二甲苯 SU8 聚苯乙烯 0.020–0.06
2.9×1410
7.5×-410 2.5
-45~200
27℃,24h或70℃,1h 180℃,30min
-125 中等 53,94 3.24 2.86 0.031 12
1.7×1710
-269~400-80~180
350 好 95 0.053-0.072 4.0 80 优异 96,97 2.56 2.65 2.22 0.003 0.001-0.009 0.042-0.070 3
5.2 2.9
250℃,1h 180℃,2min
优异 96
>350 优异 98,99 5.5×10
43.1 105 优异 99 2.25 3.00 2.89 2.53 0.008 0.120
1.0×1310 8.8×1610 5.1×1610 16
>10
2.0
0~135 80
170 290
优异 99-102 优异 55-103 0.140 11
3.1
200 65
210 107
优异 104-10
差 101,106,107 表1 常用柔性基体聚合物材料的电磁性能、电性能、机械性能
图1 图示为柔性微器件的工艺顺序。a 弹性基板(PDMS)被旋涂覆到载体基板上。b 沉积金属薄膜,例:带有铬附着的金层。c-e 利用光刻和刻蚀设计金属层成目标结构比如共振器。f 光刻之后,将柔性基板与设计好的结构图形从载体基片上剥离。
为了加强功能性及更好的制造参数控制,柔性基板将通过覆膜、挤压或刮涂来与硅载体基板结合。其中硅仅仅是用来提供微细加工过程中的机械支撑。
在聚合物与载体硅结合的过程中,获得平滑的膜很重要,不能有捕获的氧/气泡、条痕和边缘珠,这些瑕疵将会干扰到微细加工进程或者是设备的性能。
将谐振器图形转印到柔性基板上以经广泛运用,转印技术包括传统光刻、掩膜印刷、电子束光刻、激光透镜阵列光刻、电镀和直接激光刻印。这部分我们论述盛行的工艺。
光刻工艺
微细加工技术是一种传统的科技,可以用来制作工作在THz频率上的超材料。这种技术可以制造出具有高分辨率的工作在THz频率的亚波长结构并且操作简单化,这也让它很适合应用在THz超材料的单层或多层的加工上面。图2 展示出用微细加工技术制作的柔性基板超材料。图2a和2b展示了用微细加工技术以PDMS为基的多层网格超材料。共振器刻印在金属(有附着层的200nm金薄膜)上,而这整体则沉积在旋涂覆固化的PDMS基板上。通常情况下,通过这种技术得到的微分辨的图形结构会和单层基板PDMS结合的更紧凑,从而可以避免金属的分层。
然而,由于亲水性和疏水性的不同而引起的形变或许需要强等离子处理,以此来使基片在微细加工时候更加协调,某些柔性基板的疏水性很难满足微细加工中的一些步骤比如旋涂光刻胶薄膜。然而,这种表面处理只是在持续时间短时有效并且旋涂光刻胶时依旧出现条痕。另外,微细加工技术只适合那种可以承受有机溶剂和腐蚀性溶剂的聚合物。
因此,作为备选微细加工方法,软光刻、掩膜印刷、图形转印技术也引起了人们的兴趣,以此来在柔性基板上制作超材料共振器。
掩膜印刷技术
掩膜印刷技术是一种无酸腐蚀的加工技术,用来制作平整多层的微纳特性。这种技术是通过一个模板直接沉积金属薄膜或氧化物,而不需要光刻和刻蚀。这种印刷术类似于制作衬衫时用的丝网印刷术。
下面我们对掩膜印刷技术作一个简单的叙述。图3a是一种掩膜,通常是用整个硅晶元或者铝箔刻蚀而成。掩膜放置在接触或者接近基片的地方如图3b。随后,通过电子束蒸发沉积金属或者介质层,应用掩膜的沉积的特点来将掩膜复制到基片上面。利用掩膜印刷技术,100nm左右线宽图形可以印刷到任意基片上面,包括易碎的化学活性强的聚合物和塑胶(图3c和3d)。这种方法可以大量生产纳米线宽的大面积图形。掩膜可以重复利用并且得到的图形高度一致。然而,由于掩膜与基片接触或接近,在沉积时候会有损耗,多次重复使用之后,其分辨率会大大的降低。
图2 利用微细加工技术制造的THz柔性基板超材料。a和b:在PDMS上的多层大面积的网格结构。c和d:聚酰亚胺上的共振器结构的加工。
图3 掩膜印刷术的加工工序。a 目标图案,在例子中是一种500nm大小的蝴蝶结形状。b 通过掩膜沉积。c 原子显微镜下掩膜印刷术加工的实物 d 用掩膜印刷术加工的柔性器件。
软刻蚀技术
软刻蚀技术是一种备选加工技术,通过它可以在聚合物上加工微米或纳米规模的图形。近年来,通过软刻蚀发展了很多不同的技术,这里主要讨论关于超材料加工的比较盛行的技术。软刻蚀用起来比较便宜,并且克服了光刻所遇到的一些问题,包括衍射极限下的刻蚀和高强度辐射能量的需求。软刻蚀工艺需要一种弹性材料的模板,这一材料由带有载体基片的PDMS构成(图4a、4b)。载体基片由适当的印刷技术根据图样尺寸制成。剥离载体基片,模板就形成了,完全具有载体基片的特征(图4c)。通过模板可以复制各种高清晰度的图形并没有对材料的限制。从载体上复制图形后模板通过强力按压在目标表面印制图形。经过固化后,移除模板,所要的图形就形成了,该图形可以独立存在。
另一种很普遍的方法是转印,在这里所期望的所有的材料如半导体、功能氧化物或者金属全部都可以在硅片基板上面得到。这样就可以让那既定图案转化技术和高温工艺得以实现。随后,这些图案可以用柔性模板“拾起”并放置于所选用的基板上面。之后将基板从载体上面剥离。转印技术有着很好的用处但是需要精确的控制各种靶材之间的粘附尺度:施主基板、柔性模板以及目标基板。
通过使用软刻蚀技术,可以克服一些别的所存在的柔性基板的限制:高温膨胀、附着力差、低加工温度和化学不稳定性。此外,这些技术也适用于大面积结构尺寸以及非常规表面刻印。
图4 两种常见的软刻蚀工艺原理图
a到c 弹性印模制作
a:将想要图案印在硅载体基板上
b:PDMS与随后的固化和铸造
c:剥离模板
d到f 图案转印到目标基板
d:通过滴铸、旋涂或刮涂将目标基板材料加在载体基板上
e:目标图形成型
f:将目标剥离载体基板
g到i 转印技术
g:使用PDMS将主基板图形复制出来
h:将PDMS图形压印在目标基板上
i:从载体基板上剥离
电子束光刻(EBL)
EBL使用经过加速电压极小波长的电子束从而来得到纳米级图案。与传统的光刻胶暴露在紫外光下相类似,EBL技术需要光刻胶、聚甲基丙烯酸甲酯或ZEP暴露在高能电子束下。这将会导致有机结构的断裂,这可以通过使用标准显影液来解决,将有机结构溶剂在显影液中,而不用暴露在电子束下。随后,溶解抗蚀剂,淀积金属或电介质层从而得到想要的纳米级图案。
该方法使用了剥离工艺,所以由EBL定义的初始模板需要是逆转的目标图案。EBL提供了很高的可能性来加工光刻衍射极限下的纳米尺度特征,而且不需要物理掩模来转移图案。对于超材料来说,EBL技术可以用来加工使用在可见光范围的亚波长分辨率谐振器。图5 展示出用EBL技术在光电聚合物(PC403)基板上的多层谐振结构。
图5 使用电子束光刻技术加工的包含4层金的超材料,间隔层是PC403 尽管EBL技术在纳米和亚微米尺度略有建树,但为了制作更大面积更高性能的超材料,有三个主要限制需要突破:由于该技术的串行特性而引起的写入时间长的问题、接口误差对周期性造成的影响以及电子束的较低的稳定性问题。
即使对小面积图案来说其写入时间也是较长,每次只对一个元件作用也决定了输出量的减小。例如,为3mm*3mm的图案写区也需要24个小时。此外,这种串行图案化工艺中还浮现出了一系列问题如由于漂移而引起的电子束的不稳定性。大面积图案所使用的多台移动导致了很差的分辨率和较大的连接缺陷。其次,拼接错误也导致了重复性图形单元制作时偏差的增加。
最后,电子束的稳定性和精确度也是影响该技术有效性的重要因素。波束阻断是一种外部电压源,被用来开和关电子束,进而进行纳米级特征加工。在长的写入时间中,当前的任何波动都会引起不一致的曝光,从而导致PMMA显影时间的不确定性以及引入几何误差。
3D加工技术
3D加工技术可以提供低于衍射极限的成像、隐身、量子悬浮以及感测能力,所以人们对它的兴趣日益上升。平面工艺技术简单易行,被用于多层三维超材料的加工上面。然而,这样的多层超材料经常遭受各向异性的困扰。在高级应用中,隐身斗篷需要很精确的各项同性的超材料,以此可以在一定空间内对介电常数和磁导率控制。具有各向异性的超材料,其介电常数和磁导率并不能通过平面工艺获得。因此,进一步发展纳米超材料的制作技术,需要实现各项同性的亚波长超材料。
有很多先进的工艺已经用于3D超材料的制作了,比如压印光刻、微立体光刻、立柱超晶格、多光子聚合、多层电镀(图6)以及干涉光刻。然而,这些先进的技术仍然有着很多限制,如工艺的复杂性、实现的可能性和转印到柔性基板的可行性。
通过综合激光写入与化学气相沉积技术,我们探索创建了3D开口环谐振器(SRR)。化学气相沉积可以实现目标结构可以均匀的涂覆金属膜,这一特性是物理沉积所达不到的。具有不同高度的SRR已被实验证明其谐振在不同的频率。
图6
a 电子显微镜下基于聚酰亚胺基板的竖直3D超材料
b 柔性3D超材料实物图,另附单元结构
聚焦离子束(FIB)铣削是另一个用于实现纳米尺寸特征的三维的制造技术,并且其可具有高的深宽比。用FIB技术设计制作的渔网型共振器是是第一批3D光学超材料中的一种,这些超材料具有各向异性的介电常数和磁导率,并且有较宽的频谱。这种3D网格结构来源于多层金属和导电层的沉积,银层(11层)和氟化镁层(10层)交替,共21层。随之使用FIB技术来刻蚀具有高深宽比的纳米尺度特征(图7)。
图7 由聚焦离子束铣削加工的21层网格结构 银层(11层)和氟化镁层(10层)p=860nm,a=565nm,b=265nm.Chanda 等人使用了类似的刻印技术用等离子体刻蚀一种网格结构,同时也用上了纳米刻印技术和多层电子束蒸发技术,以此来实现超材料的负透射率。这种网格结构可以转印到PCMS基板上面,然后再使用转印技术将其复制到坚硬的基板上面(图8)。上述纳米工艺可以应用到红外和可见光频率范围的大面积3D超材料上。将来,综合了刻印技术与大面积光刻技术之后,可以加工具有大的负透射率的材料,而这种材料现在是由于压印的印痕、低的深宽比和低的可重复性而不能实现。
图8 a 纳米转印技术原理
b、c 电子扫描显微镜下的硅模板
d 多层超材料转印到目标基板
三维DLW(direct laser writing)技术可以用来开发研制复杂几何形状的超材料。该技术包含了很收敛的激光束在光刻胶体积内入射到衍射极限光斑上。这就可以实现三维亚微米结构的制作,也可以将图案加工在任意形状或者复杂的相互交联的材料网络,上面这些技术是传统光刻所达不到的。尽管直写技术可以实现高分辨率,但它的出产率很低且只可用于特定范围的基板。使用多波长的激励/消耗技术可以改善工艺分辨率。近来,吴等人建立了一种替代的方法,通过使用一种全金属、自支撑的手性材料,可以实现高深宽比、宽带圆二色谱特性,这种材料可以由印刷和热印制而成。Buckmann 等人展示了一种修正的“插入式”DLW技术,用以获得微米尺度的超材料结构。使用标准的DLW技术制作的超材料高度局限于几十微米。对于“插入式”3D DLW技术并没有这种限制,光刻胶本身作为基板与镜头之间的浸没液。这就可以使制作工艺总高度达到毫米量级。图9展示出一种典型的3D超材料在SEM显微镜下的图像,这种超材料是用DLW技术加工的,并且有着机械可调谐性。
图9 扫描电镜下不同倍率的3D超材料
掩模光刻(MPL)是另一种可以加工微米规模3D超材料的先进技术。使用这种技术,SRR可以直接刻印在立方体取向的SU-8基板上。基于如此精确的控制,通过复杂图案的加工,MPL技术有可能会彻底改革未来在红外和可见光频率的3D超材料结构。采用MPL技术设计的SRR是用来将磁场耦合到入射电磁波上。
尽管上述大部分技术都有希望用于3D超材料的制备,但它们并没有足够的灵活性。一些技术是复杂的,需要多个制作步骤,这会降低结构的分辨率;另一些则受到材料和基板选择的限制。此外,转印技术依靠表面的化学活性所以也是一种基板依赖型。虽然综合的软光刻和光刻技术已经被用来将图案直接转印在高度弯曲的基板上,但实现高分辨率的图案(<0.1)仍然是一项挑战。
超材料的调谐技术
机械调谐
可机械形变的柔性基板通常用于调谐超材料的谐振频率。将拉伸力作用在基板上,改变谐振器的几何形状,也改变了其电磁耦合,进而就改变了谐振频率。这种方法已经被用于调谐Fano共振通过对PDMS膜施加单轴机械应力。等离子纳米结构的调谐对可调谐纳米光子器件的发展提供了新的途径,比如可调谐滤波器和传感器。由于等离子纳米结构对结构参数的高灵敏度,机械调节十分有效。同时,机械调节也可以对米结构或纳米单元结构的做对称性调节,这种性能对光学特性有着很大的影响。
弹性基板的机械形变可以通过控制方式来修改谐振元件之间的距离。图10表示使用PDMS基板的超材料已经被用在THz和可见光频率范围的调谐。图10(a)表示一个在可见光频率可调谐的SRR超材料,其调节原理是通过柔性PDMS基板的机械形变来改变谐振频率。谐振器的机械调节是拉伸基板时,在可见光频率基板的拉伸变化比谐振线宽的大。实验验证表明SRR结构在相对大高达50%的单轴应变所造成的共振频率的变化可达4%。此调谐机制也被用来调节表面增强红外吸收,其反射信号可达180倍的提高。
在PDMS基板上面加工的等离子表面领结型天线同样也用纳米模板光刻技术。结型天线之间的缝隙可以诱导独特的电磁响应,如等离子体所引起了透明度与大的近场强度。由于这些结构的机械形变,当缝隙以10nm为步长从45nm到25nm变化时引起频率的红移。这种印在PDMS上的超材料可以覆盖在非常规表面上,比如光纤,这就可以使新的功能性光子探测和天线得以研制,将可以在远程监控环境的变化。
图10(b)展示出另一种用来机械调节THz频率的超材料的结构。图示为一种在被拉伸了的PDMS基板上面的超材料。材料的单元结构贴在褶皱的结构上面,这种结构的最高形变率可达52.1%,因此允许更宽的传输响应和机械可调谐性。
图10 以PDMS为基板的机械可调谐超材料
a 光学超材料
b蜂窝THz超材料
c 左边两个平整的THz超材料
右边两个交错的THz超材料
图10(b)中蜂巢结构超材料的布置是完全均衡的,以此来达到非偏振的响应。然而,处于褶皱状态时,结构的电磁响应对极化非常敏感。实验证明其对TE波的传输响应要比对TM波的传输响应高90%。褶皱超材料的极化依赖特性已被用来作相位阻滞器。
图10(c)所示图形是谐振频率在THz范围可调的”I”型谐振器,分为两种,有或者没有交错的缝隙。拉伸10%就可以达到8%的谐振频率调节。相比于图10(a)的拉伸50%才有4%的可调范围好了很多。“I”型结构谐振器延展成对称性的结构来得到依靠极化作用调谐的结构,在压变传感方面有很大的发展空间。
尽管别的方法也可以用来处理共振器,这些方面下面两部分会提到,机械形变调谐有着不可动摇的地位,它可以在不改变材料组成的情况下精确控制整体的设计、对称性以及系统的响应。
除了机械调谐以外,还有其他好多的调谐方法。包括机电位移、热退火和改变超流体密度。综合了相变器、半导体、石墨烯、碳纳米结构、非线性和液晶的超材料也是一个新的研究热点,Zheludev等人研究论述了这些问题。另外一些别的调谐技术的研究也将在下面文章中做出讨论。
机电位移 将机械形变调谐的概念扩展,应用电激励来诱导机械压力的变化,引申出了机电调谐。在机电调谐中,谐振器的机械形变是靠外部偏压来诱导的。林等研究人员利用微机电系统研究了一种在悬臂结构中浮空的有双开口环阵列的共振器(DSRR)。悬臂结构取代了外加偏压的激励,随后利用其自身悬臂压力的变化来反馈真实偏压的变化。DSRR的这种机电调谐可以用来展示在THz方面的可调谐滤波器。在这里静电力取代了偏压来控制悬臂的曲率。20V的偏压可使谐振频率可调0.5THz。
其他的调谐技术
这部分我们讨论对不同硬度的基板超材料所使用的调谐技术。这些技术可以用来调谐柔性超材料。基于柔性材料的更高的自由度,在外部激励下获得更多的内部磁化,使用晶格位移技术、热激励技术有望提高材料的可调谐度。
晶格位移技术
图11(a)所示为可重构超材料的概要,Lapine等人研发的晶格结构调整被用来调谐超材料的传输特性。他们利用对晶格参数有依赖作用的谐振频率,并且改变xy平面的各层周期横向位移。超材料的侧向位移导致的谐振器在x或y方向上的移位,从而导致谐振频率的剧烈变化如图11(b)。使用这种方法,可以达到谐振频率的连续调节。这种调谐技术可以用在更加宽的电磁波段和其他形状的谐振器中。为了实现这种智能的在高频连续可调的超材料,能够产生大面积多层超材料结构的微、纳米工艺是必须的,同时可以在三个方向都能良好控制的晶格位移材料也是不可或缺的。
图11 晶格位移所制作的可重构的超材料
a 超表面位移原理
b 不同胶片下的传输响应
热激励
实验证明使用温度来控制介电常数这一方法已经被用在调节THz波段的谐振器。这依赖于氧化物包括温度感应在内的多功能特性。由SrTiO3制成的于温度相关非磁性棒已经用于调节THz频率,其调节是通过控制温度完成的。实验证明温度从300K变化到120K时,谐振频率改变了44%。
热激励也被用来调节超材料。一个由悬臂支撑的SRR超材料也被证实可以用在调谐电磁反应,它的悬臂平面对热退火反应较为敏感。然而热退火致动过程是种被动调谐,调谐中的SRR一旦改变就不可能再返回到初始状态。因此,像电阻、压电和静电致动这样的调谐技术必须要进一步的研究才能用来调谐超材料。
结论和展望
在本文中对柔性可塑基板的超材料最新进展做了基本的介绍。包括超材料在现实设备中的使用、国家最先进的工艺技术和对柔性基板超材料的调谐(或者扩展到一些柔性器件的关键性技术)。
超材料以经可以制作在各种聚合物上,这些聚合物的特性在超材料的功能中起着很大的作用。这项工作着眼于普通聚合物的细节特征,研究人员详细的总结了这些聚合物的使用方法。具有低电耗和优良机械特性的基板是用作调谐超材料的优先选择。
综述了柔性基板超材料的制造工艺。传统的微、纳加工技术被广泛用在THz和可见光频率器件上,并且正向着新技术转化。掩模刻蚀技术和纳米压印光刻技术也以及克服了一些由柔性基板的引入而出现的问题。膜投影光刻和直接激光写入技术在复杂图形方面略有建树,肯能加工出复杂的各项同性超材料结构。
机械形变调谐很有希望获得有适合响应的可调谐超材料而不加入别的复杂设计和构造。这种技术可以得到超材料的动态调谐而不需要加偏置电压、非线性分量和MEMS开关。此外,机械调谐并不受使用频率的限制,它可以扩展从微波、THz到可见光波段。通过分子水平加强了动态表面红外吸收,机械调谐超材料的能力达到了新的高度。对于柔性基板,超材料和等离子纳米结构对材料的结构参数十分敏感,这为光子电路、生物系统、天线、传感器(应变、温度、电介质、生物分子、化学等)、俘能设备、可调谐隐形装置提供了新的技术创新,可以让它们工作在更宽的频率幅度,克服了特定波长和角度的限制,还有可以使用超透镜在原子尺度成像。为了使这些应用更好的实现,新的研究正在开展来研发出有更好分辨率的谐振器使用在更高的频率波段、更大面积的柔性基板、3D超材料、各项同性响应结构、更快的调谐能力的机械可调谐超材料。
超材料的局限性突破通过使用柔性可塑基板实现了更宽的可调谐性。到目前为止,这有趣的工作已经突出应用在了THz超材料领域,并展示了天线、滤波器、吸收器和传感器的实用性。主要由于缺乏用于控制THz频率所需的光子元件。进一步的研究正在展开,以实现3D THz超材料的流行应用。目标将会是各项同性响应超材料,它开辟了超材料在THz、红外以及可见光频率的使用。调谐机制的发展和制作工艺的进步是未来超材料发展的关键因素。
超材料天线以其自身的优势,打开了市场的需求,市场上有轻质、高效路由器,移动电话和机场扫描仪。然而,集成天线的其他功能就没那么有优势了,不过这种情形可以通过使用柔性基板来改善。出于超材料本身吸收与传输电磁波能力,它也被用来俘获电磁能量。尽管这种俘能设备以经证明可以使用在微波波段,实际还是需要更高分辨率的大面积的纳米结构,用来使用在更高的频率。未来的超材料,从简单的充电设备到房屋里的窗户,都可以吸收以前认为不可能的电磁能。
由此可以得出结论,柔性聚合物可以在机械形变调谐中展现优势。使用柔性基板的超材料可以联接其他组件和非常规表面。在柔性基板上加工更高分辨率的微、纳规模的图形,这种加工工艺是未来超材料发展的关键。
致谢
澳大利亚研究协会承认项目DP1092727(MB)DP1095151(WW)DP110100262(SS)和DP130100062(SW,SS).感谢维多利亚和AFAS-Vic协会的支持,感谢参与本文的合作者和同事。
第五篇:大学生柔性教育管理模式分析论文
摘要:思想导师制的教育形式是柔性教育,是适应新时期大学生教育的最佳形式之一,符合大学生成才和发展所需要。
关键词:大学生;思想导师;柔性教育管理
一、思想导师是柔性教育管理者
思想导师就是当大学生在学习生活中遇到困难、困惑或思想压力过大时,能给大学生进行正确引导和帮助的教育者。是学生思想上的引路人,在学生最迷惘时提供及时的帮助,为困惑的学生找到正确的方向,鼓励他们树立战胜困难的勇气。思想导师必须是学生的贴心人,是学生真诚的朋友,是学生可信赖的长者。对大学生的教育管理,分外在和内在管理两种,外在教育管理即是刚性管理,主要通过校纪校规等刚性制度对大学生的行为进行约束,这种管理带有明显的强制性和不可抗拒性,对稳定校园环境、维护校园秩序无疑是必要的、有效的。内在管理是柔性的,主要是采用潜在的、润物无声的形式,对学生的思想成长会形成深刻、持久的影响,启发他们自觉的行动,使其明辨是非。这种柔性管理方式具有明显的感情色彩,能充分体现教育者和受教育者平等的地位,能充分发挥情感的感化功能。思想导师对学生付出真情,触及灵魂,从内心深处去打动学生,使受导学生能完全接受导师的教育,就是柔性教育的管理者。刚性教育管理与柔性教育管理相结合,可以使教育的功能最大化,教育的功效最佳,达到全方位教育、全员教育的目的。
二、思想导师的选择
我们的教育是全员参与的教育,在校的每一个老师都有义务参与对学生的教育管理。全校所有的教职工都可以是学生的思想导师,而每一个学生对思想导师的选择应有针对性,应随时随地根据实际情况做出合理的安排。常见的思想导师有专门负责教育管理的辅导员、心理咨询师;学校各部门的行政管理人员;给学生上课的老师;宿舍中的生活老师;学生特别信任的教职工;负责招生就业的老师或是有亲戚朋友关系的老师,等等。总之,选择的思想导师,必须是有管理教育经验的老师,有高度的教育责任感,熟悉学生的心理状况,能灵活处理学生面临的各种困难,是学生特别信任的老师。
三、思想导师的主要工作职责
明确思想导师职责,是思想教育成败的关键。根据受导学生存在的问题和困惑,将工作的主要内容分为五个方面:(1)帮助学生树立社会主义核心价值观,激发正能量,学会正确的人际交往和处理人际关系;(2)帮助学生尽快适应大学学习、生活,引导学生做好生涯规划和职业生涯规划,做好在大学期间的学习计划;(3)积极了解学生的心理困惑和心理健康状况,对有心理问题的学生及时进行干预和引导;(4)在思想上鼓励学生思追求进步,积极向党组织靠拢,鼓励学生积极参加党团组织的各项活动;(5)帮助家庭困难的学生申请国家助学金,帮助家庭贫困的优秀学生申请国家奖学金和国家励志奖学金。
四、思想导师对学生教育的最佳切入点
对大学生的教育要坚持个体重于群体的原则,充分尊重学生的个性发展。高职院校是培养应用性型人才的基地,高职学生的特点是:头脑灵活,反应快,适应性强,有较强的创造力,也有一定的叛逆精神。他们对自己的行为有较强的判断力和控制力,对自己所面临的迷惑或所犯的错误有一定的认识,但因为有时顾及自己的面子,不会轻易地认识自己的不足并及时改正错误。作为思想导师,要把好脉,找准切入点,及时跟学生进行思想交流,让学生认识到自己的不足。思想导师与受导者应平等相待,才能最有效地切入并开展受导工作。最常见的切入点是,导师应积极主动地介入到学生活动当中去,主动到教室、公共场所、食堂或是寝室找学生谈心。可以谈学习、谈生活、谈家庭、谈未来,也可以聊学生最感兴趣的爱情话题和职业规划。让学生明显感觉到思想导师很亲切,很有亲和力,学生从心底放弃抵触情绪,全面接受思想导师的教育和影响。思想导师的切入要先行,不要等到问题出现了再切入。当学生的情绪很冲动时,教育工作就往往会很被动,学生是很难接受不熟悉老师的教导。如果思想导师先与学生建立了良好的感情基础,当学生出现问题时介入教育,就会真正地让学生接受。
五、利用网络平台进行思想教育
互联网的开放性、平等性和互动性为大学生开创了一个全新的交流学习的平台。网络平台也是一把双刃剑,有利有弊。大学生对网络信息能否全面客观地进行分析和判断,对将来形成何种人生观、价值观、世界观至关重要。网络为我们提供了海量信息和自由表达的同时,也成了各种势力同我们争夺大学生思想教育的重要阵地。大学生处于人生观、价值观、世界观的形成时期,还不能完全客观地对网络信息的真假、善恶、是非进行全面客观公正地判断和分析,很容易受到不良思想的侵蚀。思想导师应充分利用网络这个交流平台对大学生进行教育、交流。学生有时不方便与思想导师当面谈话、交心,而通过网络,就可以随意地、自由地与导师进行交流。思想导师利用QQ、微信等聊天工具、大学城空间与学生进行交流、引导、教育,经常浏览学生的空间说说和微信相册,第一时间了解学生的思想动态,及时为有困惑的学生解难。思想导师收藏并整理一系列教育素材,放在自己的空间,为学生提供学习的资源;也可以把自己的心得体会和一些思路放在空间,让学生学习、思考,使网络教育成为一个全新的、方便、有效的教育平台。每一个思想导师通过网络与学生交流时,对受教育的学生进行较详细的教育档案管理。要随时记下每一个学生思想动态,存在什么样的问题?存在哪些思想障碍?遇到什么样的困惑和困难?经过教育引导之后,达到什么效果?取得什么成绩?还需要在哪些方面继续努力?包括跟学生交流的主要过程等,都详细地记录下来,通过教育档案管理,可以适时调整教育的方式和手段,评价教育的效果。在建立教育档案时还应注意做好保密工作。
六、对思想导师教育效果的评价
思想导师要结合教育的实际和受教育学生的转变效果做出合理评估。然而如果在评价时只制订一个统一的标准,虽然目标明确,可操作性强,但容易陷入机械化和简单化。对思想导师教育效果的评估要能弥补刚性管理的不足,最大限度地发挥人的主观能动性和创造性。思想导师先要提出一些具体的要求:(1)每位思想导师与被指导的学生建立对应的联系表;(2)每次与所指导学生的交流要作好详细的交流记录;(3)思想导师对与所指导学生的班主任或是任课教师的交流作好记录;(4)思想导师对所指导的学生建立教育记录,特别是记录思想转化的过程,学生的思想认识和现实表现进步等方面和不足。对思想导师的考核评价分为三部分,实行百分制,第一部分是工作的实际情况评价(占50分),主要是从思想导师的责任感、是否及时为学生解决问题、谈话效果记录等进行评价;另一部分由系部学工评价(占25分),主要是从受指导学生的思想转化和进步的程度,对思想导师工作成效进行评价;一部分由学工处评价(占25分),主要是根据生活老师、心理咨询师、学生的各项活动效果等方面对受指导学生进步转化的情况做出评价分析。同时根据最终评价结果进行表彰,对工作成绩突出的指导老师授予“优秀思想导师”称号,对进步较大并达到入党条件的学生可以发展为预备党员,激发思想导师的工作积极性。总之,思想导师是柔性的教育管理者,是学生成长过程中的引路人,我们要充分利用发挥好思想导师的教育功能和教育效果。
参考文献:
[1]彭利辉.高职院校大学生思想道德教育问题探析[J].保险职业学院学报,2013(3):81-83.[2]郭本玲.如何在网络环境下做好大学生的思想政治教育工作[J].才智,2012(8):212.[3]聂松竹.柔性管理理念下的大学生教育管理[J].齐齐哈尔大学学报(哲学社会科学版),2010(2):166-167.