第一篇:人教版八年级数学上册《分式方程》教学反思
本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回顾与思考、合作和讨论的过程中理解和掌握知识与技能,体验感受过程、方法和数学思想,培养情感态度价值观,从而达成教学目标。
本节课关于分式方程的增根的教学,是通过创设小亮解法的情境,引导学生通过思考探索、阅读理解、动手解题等手段,从而获取知识、形成技能,发展思维,学会学习,而不是由教师去讲解增根的概念和产生原因。
本节课小结采取了学生提出问题、教师解答问题的形式.这种方法一方面为学生搭建了展示自己的平台,设置了独立思考的想象空间,提供了锻炼表达能力的机会;另一方面也为教师能及时弥补教学中存在的漏洞创设了条件和可能.不过,若时间允许的话,有些问题可以由学生讨论解决。
教学环节是否可行,最终是由教学目标是否达成来检验和评价的.所以本节课的某些教学环节对目标的达成是否行之有效,还有待于在今后的教学过程中不断实践和完善。
第二篇:八年级数学上册《分式方程》练习题
《分式方程》练习题
一、选择题 1.解方程84x22的结果是()2xB.x2
C.x4 D.无解 A.x2
2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()
A.8
B.7
C.6
D.5 3.一件工作,甲单独做a天完成,乙单独做b天完成,两人合作,共需()
A.a+b天 B.
111ab+天 C.天 D.天 ababab4、若解分式方程2xm1x1-2=产生增根,则m的值是()x1xxx(A)-1或-2(B)-1或2(C)1或2(D)1或-2
二、填空题
75的解是.x2x2xm3的解是正数,则m的取值范围为______. 2.已知关于x的方程x21.方程3.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x下,则可列关于x的方程为 .
4、使分式xm2方程产生增根的m的值________. x3x31x4有增根,则增根是________.7x33x5、如果分式方程:
6、若分式方程
三、计算题 1.解分式方程:
a1220有增根x=2,则a的值是________.x2x4x62112.解方程2. x2x2x1x1
3、x21x2x813.
4、8 2x4x77x
四、.关于x的分式方程
五、若方程
六.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?
1k32有增根,求k的值. x2x2x432x2mx1无解,则m的值是多少? x33x2
七.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.八、A、B两地相距80千米,一辆公共汽车从A地出发,开往B地,2小时后,又从A地同方向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两种车的速度.
第三篇:八年级数学 16.3.1 分式方程教案 人教新课标版
教学目标:
1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.教学方法:引导启发、合作探究、讲练结合 导学过程:
一、复习预习
1.回忆一元一次方程的解法,并且解方程
x2410020v2x366020v1
2.完成本章引言的问题,小组议一议:方程的特征,然后概括出分式方程的概念__________________________________。
3.分式方程与整式方程的区别是___________________________________。跟踪练习:
1、下列方程中,哪些是分式方程?哪些是整式方程?
x22x3,x24x3y7,1x21x3x,x(x1)x1,3x,2xx1510,x10020v2,2x1x3x1
二、解法探究: 如何解分式方程
6020v
小组内讨论交流解法;
检验:将v=5代入分式方程,左边=4=右边【此步应强调,学生容易漏掉此步。】
所以v=5是原分式方程的根.归纳分式方程的解题思路:
用心
爱心
专心
3、学生用同样的方法尝试解方程:
1x5x25例后学生与老师共同概括解分式方程的基本思想:
原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的102
增根
产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零 验根:把求得的根代入最简公分母,看它的值是否为零。使最简公分母值为零的根是增根。
解分式方程的一般步骤:
1.去分母,在方程的两边都乘最简公分母,约去分母,化成整式方程;――化整 2.解这个整式方程;――解整
3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。——验根
4、试一试:
23(P28)例1.解方程:
x3x
(P28)例2.解方程:
三、学习体会
1、本节课你有哪些收获?
2、预习时的疑难解决了吗?你还有哪些疑惑?
3、你认为老师上课过程中还有哪些需要注意或改进的地方?
四、达标检测
1、解方程
32236(1)
(2)2xx6x1x1x1(3)x1x14x12xx113(x1)(x2)
1(4)
2x2x1xx22
2、应用拓展: X为何值时,代数式
用心
爱心
专心 2x9x31x32x的值等于2?
用心
爱心
专心3
第四篇:八年级数学《分式方程的解法》教学反思
八年级数学《分式方程的解法》教学反思
八年级数学《分式方程的解法》教学反思本节课的重点是探究分式方程的解法,我首先举一道一元一次方程复习其解法,然后通过解一道分式方程,启发引导学生参照一元一次方程的解法,由学生自己探索、归纳分式方程的解法。学生不是停留在会课本知识层面,而是站在研究者的角度深入其境,使学生的思维得到发挥。在教学设计上,以探究任务启发引导学生自学自悟的方式,提供了学生自主探究的舞台,营造了锻练思维的空间,在经历知识的发现过程中,培养了学生探究、归纳的能力。在课堂教学中,我时时注意营造思维氛围,让学生在探究中学会思考、表达。在本课的教学过程中,我认为应从这样的几个方面入手: 1.分式方程和整式方程的区别:由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母 4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。在教学方法上,采用类比渗透思想方法进行教学,通过与一元一次方程解法相比较,启发引导学生自主探究、归纳分式方程的解法。运用类比教学法具有以下三方面的优点: 1.通过复习一元一次方程的解法,学生在探究、归纳分式方程解法的同时进行类比,让学生在解分式方程时有法可循,而不会觉得无从下手。2.把分式方程的解法与一元一次方程的解法进行比较,让学生既可以温习旧知识,又可以加深对新知识的记忆。3.通过对一元一次方程和分式方程解法的类比,更能突显分式方程解法中验根的重要性。
第五篇:人教版八年级数学上册15.3分式方程教学设计
15.3 分式方程
第1课时
【教学目标】 知识目标
1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.能力目标
经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.情感目标
在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.【教学重难点】
重点:解分式方程的基本思路和解法.难点:理解解分式方程时可能无解的原因.【教学过程】
一、创设情境,导入新课
问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?
分析:设江水的流速为v km/h,则轮船顺流航行的速度为(30+v)km/h,逆流航行的速度为(30-v)km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时.可列方程=.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.二、探究新知
1.教师提出下列问题让学生探究:
(1)方程=与以前所学的整式方程有何不同?(2)什么叫分式方程?
(3)如何解分式方程=呢?怎样检验所求未知数的值是原方程的解?(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?
(学生思考、讨论后在全班交流)2.根据学生探究结果进行归纳:(1)分式方程的定义(板书):
分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程 练习:判断下列各式哪个是分式方程.(1)x+y=5;(2)=;(3);(4)=0
在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.(2)解分式方程=的基本思路是:将分式方程化为整式方程.具体做法是:“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的解,你发现了什么?与你的同伴交流.4.思考:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组讨论产生上述结果的原因,并互相交流.5.归纳:
(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.(2)解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.三、巩固练习
1.在下列方程中: ①=8+;②=x;③=;④x-=0.是分式方程的有()A.①和②
B.②和③ C.③和④ D.④和①
2.解分式方程:(1)=;(2)=.四、课堂小结
1.通过本节课的学习,你有哪些收获?
2.在本节课的学习过程中,你有什么体会?与同伴交流.引导学生总结得出: 解分式方程的一般步骤:
(1)在方程的两边都乘以最简公分母,约去分母,化为整式方程.(2)解这个整式方程.(3)把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必须舍去.五、布置作业
课本152页练习.第2课时
【教学目标】 知识目标
会分析题意找出相等关系,并能列出分式方程解决实际问题.能力目标
通过让学生经历分析相等关系列方程的过程,培养学生分析问题和解决实际问题的能力,进一步体会化归思想.情感目标
通过学习,更加关注生活,增强用数学的意识,从而激发学习数学的热情.【教学重难点】 重点:列分式方程解决实际问题.难点:找出相等关系列出分式方程,将实际问题数学化.【教学过程】
一、复习提问
1.解分式方程的步骤
(1)方程两边同乘以最简公分母,化分式方程为整式方程;(2)解整式方程;(3)验根.2.列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.3.由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么? 在学生讨论的基础上,教师归纳总结基本上有五种:(1)行程问题:基本公式:路程=速度×时间, 而行程问题中又分相遇问题、追及问题.(2)数字问题
在数字问题中要掌握十进制数的表示法.(3)工程问题
基本公式:工作量=工时×工效.(4)顺水逆水问题 v顺水=v静水+v水,v逆水=v静水-v水.本节课我们将学习列分式方程解决实际问题.二、探究新知
例1:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?
(鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究)
分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1.甲队一个月完成总工程的,设乙队如果单独施工1个月能完成总工程的,那么甲队半个月完成总工程的,乙队半个月完成总工程的,两队半个月完成总工程的+.则有++=1.(教师板书解答、检验过程)
讨论:列分式方程解应用题与以前学习的列方程解应用题有什么区别?(学生讨论后回答)区别:解方程后要检验.归纳:列分式方程解应用题的方法和步骤如下: 1.审题分析题意;2.设未知数;3.根据题意找相等关系,列出方程;;4.解方程,并验根(对解分式方程尤为重要);
5.写答案.例2:从2004年5月起某列列车平均提速v千米/时.用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?
【分析】这是一道行程问题的应用题,基本关系是:速度=.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间.设提速前的平均速度为x千米/时,则
提速前列车行驶s千米所用的时间为小时,提速后列车的平均速度为(x+v)千米/时,提速后列车行驶(s+50)千米所用的时间为小时.列方程得:=.(学生板书解答、检验过程,生生互相矫正完善)
引导学生注意:本题的检验中利用了问题的实际意义,根据字母的含义确定其取值的范围中不含负数和0,从而确定分式方程解的情形.三、随堂练习
课本154页练习.补充练习:
一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?
(学生独立完成后,互相交流.三名学生板演解题过程,集体矫正.)
四、课堂小结
通过本节课的学习,你获得了哪些解决问题的方法?谈谈你的收获和体会.温馨提示:对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系.对于我们常见的几种类型题我们要熟悉它们的基本关系式.五、布置作业
课本154~155页习题15.3第3、4、5、6、7、8题.