八年级数学上册 分式方程教案 青岛版

时间:2019-05-12 17:15:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级数学上册 分式方程教案 青岛版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级数学上册 分式方程教案 青岛版》。

第一篇:八年级数学上册 分式方程教案 青岛版

课题:3.7《分式方程》一(共2课时)孙秀蕾

教学目标

(一)教学知识点

1、用分式方程的数学模型反映现实情境中的实际问题.2、用分式方程来解决现实情境中的问题.(二)能力训练要求

1、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力.2、认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.(三)情感与价值观要求

1、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.2、培养学生的创新精神,从中获得成功的体验.教学重点

1、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2、根据实际意义检验解的合理性.教学难点

寻求实际问题中的等量关系,寻求不同的解决问题的方法.教学过程

Ⅰ、提出问题,引入新课

前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.2、学习探究

5、甲、乙两地相距360千米,张老师和王老师分别乘坐早7时发出的普通客车和8时15分发出的豪华客车从甲地去乙地,恰好同时到达.已知豪华客车与普通客车的平均速度的比是4:3,求两车的平均速度。

温馨提示:这个问题中的等量关系是:

普通客车所用的时间-豪华客车所用的时间=时

解:设豪华客车的平均速度为4x千米/时,普通客车的平均速度为3x千米/时,于是豪华客车从甲地到乙地所用的时间为根据题意,得方程-

时,普通客车从甲地到乙地所用的时间为

时,解这个方程,得x=24 检验可知,x=24是这个方程的解。因为4x=96(千米/时),3x=72(千米/时),所以豪华客车的平均速度是96千米/时,普通客车的平均速度72千米/时。

思考:想一想,从例5的条件出发,还可以探求哪些未知量?(例5是行程问题,教学中应先通过学生读题与审题,弄清题意,抓住路

程、速度、时间之间的基本等量关系,认真分析题目。从例5的条件出发,还可以求两车到达乙地的时间;豪华车开车时,普通客车已走过的路程等.这里应鼓励学生编题并作出解答;)例

6、阳光小区有A型和B型两种住宅出售,A型与B型住宅每平方米的价格分别是全楼每 1平方米平均价格的1.1倍与0.9倍,而且A型比B型的面积#40平方米.如果A型与B型两种住宅的售价分别为33万元与36万元,求全楼每平方米的平均价格. 按照题意,思考下面的问题,并与同学交流.(1)如果设全楼每平方米的平均价格为x元,那么A型住宅与B型住宅每平方米的价格分别是多少?(2)A型住宅与B型住宅的面积分别是多少?(3)根据“A型住宅比B型住宅的面积少40平方米”这个等量关系,列出的方程是 .

(4)你会解这个方程吗?试一试.

去分母,即两边同乘,得到 .

解这个方程,得x=

(5)怎样检验它是不是方程的根?(列分式方程解应用题的检验有两层意义:其一,检验所得到的根是否为原方程的根;其二,检验原方程的根是否符合题意)(6)你得到的答案是什么? 思考:根据例6提供的信息,你能编制出另外一个用分式方程解决的问题吗?与同学交流.(例6是来自现实生活的题目.根据题意,列出的方程是

=40,解这个方程,得x=2 500,经检验符合题意,即全楼每平方米的平均价格是2 500元。)

归纳:列方程解应用题的基本步骤是:审、设、列、解、验、答.(1)审——仔细审题,找出等量关系.(2)设——合理设未知数.

(3)列——根据等量关系列出方程(组).(4)解——解出方程(组).

(5)验—— 一验所求根是不是所列方程的解,二验是否符合实际意义。(6)答——答题.

3、跟踪训练:

小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本的价格各是多少?

4、巩固与提高:

1、甲、乙两码头相距s千米,船在静水中的速度是每小时a千米,水流速度是每小时b千米,船往返一次所需的时间是(). A、小时B、小时C、(+)小时 D、(+)小时

2、为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树,由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵?设原计划每天种植x棵,根据题意得方程。

3、甲打字员打9 000个字所用的时间与乙打字员打7 200个字所用的时间相同,已知甲、乙两人每小时共打5 400个字,问甲、乙两个打字员每小时各打多少个字? 全面提升能力

请结合生活实际,自编一道应用题,可以用方程

=3求解,并解出结果.

5、学习小结

本节课你学到了哪些知识?有什么感想?

6、作业:课本P82 A组2、3

7、教学反思:

第二篇:数学八年级上册分式方程教学计划表青岛版

数学八年级上册分式方程教学计划表青岛版

聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。查字典数学网编辑分式方程教学计划表,以备借鉴。教学目标: 1.知识目标:

(1)掌握解分式方程的步骤。

(2)理解解分式方程时验根的必要性。2.能力目标:

会按照解分式方程的步骤解分式方程。3.情感与价值观:

(1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

(2)运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。

老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。重点:

1.探索解分式方程的步骤,熟练掌握分式方程的解法。2.体会解分式方程验根的必要性。

难点:如何将分式方程转化为整式方程;体会分式方程验根

第 1 页 的必要性。

学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。

教学准备:投影仪、各例题的标准解答过程。教学过程:

第 2 页

一、课堂导入

由课本第87页(即前一节课的内容:根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。

二、新课: 例1 解分式方程:

(1)由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的解法。

[设计意图:课文的第一个例子是:_______,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母_____,若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子_____,这样避免了学生采用交叉相乘的方法求解] [学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程(如:)相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的第 3 页 解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点](2)引导学生检验刚才求得的解是否是原方程的解。[设计意图:让学生明白将值代入原方程检验是分式方程验根的一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及] [学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致] [知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。显然,这种书写不够规范。应分别代入两边验证为好] 例2 解方程:

让学生自已求解,解得_____,引入增根的概念。并说明验根除了代入原方程,还可检验各分母是否为0,从而判别是否是增根。

[设计意图:学生不明白为何代入原方程的分母或最简公分母也可验根,我设计此例的目的是让学生明白解分式方程可

第 4 页 能会产生让分母为0的根,即增根,自然以后解分式方程要检验了] [学情预设:在前面学习分式有关内容时,学生对于像_____是相反的关系掌握得很好,可以轻松得出 _____,这样在方程两边同时乘以_____即可。若学生没注意到这个细节,老师可稍加提示] [知识链接:有了第一个例子,学生已经明白解分式方程的步骤,可以自行解此方程] 例3 解方程:

[设计意图:此题需要学生对分母分解因式,为解最一般的分式方程起示范作用] [学情预设:有学生直接在方程两边乘以_____。这种方法可以,但繁琐。在学生解完之后,引导他们对在方程两边乘以最简公分母 还是乘以 进行对比。得出较简便的方法] [知识链接:学生已经学习过分解因式 ___

三、阶段小结:

引导学生总结解分式方程的步骤:

1.在方程的两边同时乘以最简公分母,约去分母,化成整式方程。

2.解这个整式方程。

3.验根_______,引导学生对两种验根方法的优、缺点进行讨论。

第 5 页 [设计意图:梳理一遍解题步骤,解题思路会更清晰]

四、强化练习:

1.完成课本第90页的随堂练习。完成后学生相互交换改卷,查找错误并打分。评分标准由学生在课堂上集体商定。[设计意图:将小结的知识点内化到学生的知识结构中。简单机械做题,有一定的效果,但效率不高。学生自测,接下去同学互改,能调动学生的积极性。在商量评分标准的过程中,学生自然体会到各个步骤的重要性。这样既完成了强化练习,又提高了学习效率] 小编为大家提供的分式方程教学计划表大家仔细阅读了吗?最后祝同学们学习进步。

第 6 页

第三篇:八年级数学上册《分式方程》练习题

《分式方程》练习题

一、选择题 1.解方程84x22的结果是()2xB.x2

C.x4 D.无解 A.x2

2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()

A.8

B.7

C.6

D.5 3.一件工作,甲单独做a天完成,乙单独做b天完成,两人合作,共需()

A.a+b天 B.

111ab+天 C.天 D.天 ababab4、若解分式方程2xm1x1-2=产生增根,则m的值是()x1xxx(A)-1或-2(B)-1或2(C)1或2(D)1或-2

二、填空题

75的解是.x2x2xm3的解是正数,则m的取值范围为______. 2.已知关于x的方程x21.方程3.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x下,则可列关于x的方程为 .

4、使分式xm2方程产生增根的m的值________. x3x31x4有增根,则增根是________.7x33x5、如果分式方程:

6、若分式方程

三、计算题 1.解分式方程:

a1220有增根x=2,则a的值是________.x2x4x62112.解方程2. x2x2x1x1

3、x21x2x813.

4、8 2x4x77x

四、.关于x的分式方程

五、若方程

六.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?

1k32有增根,求k的值. x2x2x432x2mx1无解,则m的值是多少? x33x2

七.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?

(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.八、A、B两地相距80千米,一辆公共汽车从A地出发,开往B地,2小时后,又从A地同方向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两种车的速度.

第四篇:人教版八年级数学16.3分式方程教案

16.3分式方程(二)

学习目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.学习重点:利用分式方程组解决实际问题.学习难点:列分式方程表示实际问题中的等量关系.学习过程:

一、工程问题:工作量=工作效率×工作时间 工作效率= 工作时间= 例如:一项工程 , 甲单独做 5小时 完成, 乙单独做 6小时完成

工作总量是__________ 甲的工作效率_________乙的工作效率__________ 例题学习:

两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这是增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快? 分析:分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1 解:设_________________________________________________根据题意得

课堂练习:

(1)、某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?

解:设_________________________________________________根据题意得

(2)、甲、乙两工程队各挖15千米水渠,甲队每天挖水渠是乙的1.2倍,甲队的完工时间比乙队少半天,问甲、乙两工程队每天各挖水渠多少千米?

解:设_________________________________________________根据题意得

(3)、甲做180个机器零件与乙做240个机器零件所用的时间相同,已知两人每小时共做70个机器零件,两人每小时各做多少个?

解:设_________________________________________________根据题意得

(4).学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.解:设_________________________________________________根据题意得

(5).一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天? 解:设_________________________________________________根据题意得

二、行程问题:路程= _________×________ 速度 时间

顺水速度= ____________+____________ 逆水速度=_____________+____________ 例题学习:从2005年5月起某列车平均提速 y千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行使50千米,提速前列车的平均速度是多少? 时间(量).等量关系是:提速前所用的时间=提速后所用的时间

解:设_________________________________________________根据题意得

分析:是一道行程问题的应用题, 基本关系是:速度=

路程.这题用字母表示已知数

课堂练习:

1:八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达。已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度。

解:设_________________________________________________根据题意得

2、甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分种到达目的地。求甲、乙的速度。

解:设_________________________________________________根据题意得

3.两个小组同时开始攀登一座450米高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早15分种互达顶峰,两个小组的攀登速度各是多少?

解:设_________________________________________________根据题意得

4一船在静水中每小时航行20千米,顺水航行72千米的时间恰好等于逆水航行48千米的时间,求水流速度

解:设_________________________________________________根据题意得

5、供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.解:设_________________________________________________根据题意得

6、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 解:设_________________________________________________根据题意得

7.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.三、盈亏问题:利润=_____________-____________ 利润率= =

总价=__________×______________ 1某商店销售一种衬衫,四月份的营业额为5000元,为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售量比四月增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价。

2某农场 原有水田400公顷、旱田150公顷,为了提高单位面积产量,准备把旱田改为水田,改完后,要求旱田占水田的10%。纹银把多少公顷旱田改为水田?

练习

1、某大商场家电部送货人员与销售人员人数之比为1︰8.今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货.结果送货人员与销售人员人数之比为2︰5.求这个商场家电部原来各有多少名送货人员和销售人员?

2、对甲、乙两班学生进行体育达标测验,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,并且甲班人数与乙班人数相等,求甲班人数

3、一服装店在广州看到一种夏季衬衫,用8000元购进若干件,以每件58元的价格出售,很快售完;又用17600元购进同样的衬衫,数量是第一次的2倍,每件进价比第一次多4元,服装店仍按每件58元出售,全部售完,问该服装商店这笔生意盈利多少元/

四 学习小结:

设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,正确地理解问题情境,分析其中的等量关系是设未知数、列方程的基础.可以多角度思考,借助图形、表格、式子等进行分析,寻找等量关系,解分式方程应用题必须双检验:(1)检验方程的解是否是原方程的解;(2)检验方程的解是否符合题意

第五篇:2017学年八年级数学上册15.3分式方程第2课时教案

15.3 分式方程(第2课时)

教学内容

分式方程.

教学过程

一、导入新课

3解方程 x1.

x1x1x2

二、探究新知

1.解分式方程

学生独立思考,写出此方程的解答过程,师及时点评. 提示:整数别忘同乘最简公分母. 练习:解方程答案:无解

2.解含字母的分式方程 解方程x1421. x1x1ab1(b1). xa学生独立思考,写出此方程的解答过程,师及时点评. 解:方程两边同乘 x-a,得

a+b(x-a)=(x-a).

去括号,得 a+bx-ab=x-a. 移项、合并同类项,得(b-1)x=ab-2a. ∵b≠1, ∴b-1≠0.

ab2a. b1ab2a时,x-a≠0,所以x=ab2a是原分式方程的解. 当x=b1b1∴x=3.分式方程的应用

例3 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?

让学生由题意填写下题:甲队1个月完成总工程的_____,设乙队单独施工1个月能完成总工程的 ,那么甲队半个月完成总工程的____,乙队半个月完成总工程的____,两队半个月完成总工程的 .

让学生找出问题中的哪个等量关系,列出方程.学生独立思考,写出此方程的解答过程,师及时点评.

三、课堂小结

1.会解较复杂的分式方程和较简单的含有字母系数的分式方程. 2.能够列分式方程解决简单的实际问题.

四、课后作业

习题15.3第2、3题.

教学反思:

下载八年级数学上册 分式方程教案 青岛版word格式文档
下载八年级数学上册 分式方程教案 青岛版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版八年级数学上册《分式方程》教学反思

    本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回......

    八年级下数学分式方程练习题

    分式方程检测题 姓名:____________ 一、精心选一选 1. 在xyy46,,,中分式的个数有( ) 24yxyA.1个 B.2个 C.3个 D.4个 2. 下列各式是最简分式的是 4baa2b1A. B. C. D.2 8aba2axyb2a3......

    人教版八年级数学上册15.3分式方程教学设计

    15.3 分式方程 第1课时 【教学目标】 知识目标 1.理解分式方程的意义. 2.了解解分式方程的基本思路和解法. 3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.......

    青岛版八年级数学上册教学计划(大全)

    八年级上学期数学教学计划 一、学情分析 本学期担任八年级5、6班的数学教学,从上学期期末成绩来看,学生数学基础非常差,虽然学生基本形成数学思维模式,具备一定的应用数学知识解......

    八年级数学《分式》(分式运算_分式方程)练习题

    《分式》训练题一.解答题(共10小题) 1.化简: (1)(2)(3)(4). 2.计算; ①②3.先化简:;若结果等于,求出相应x的值. 4.如果,试求k的值. . 5.(2011•咸宁)解方程6.(2010•岳阳)解方程:7.(2010•苏州)解方程:8.(2011•苏......

    新青岛版八年级上册数学教材内容

    新青岛版八年级上册数学教材内容 第一章全等三角形 1.1全等三角形 1.2怎样判定三角形全等 1.3尺规作图第二章 图形的轴对称 2.1 图形的轴对称 2.2 轴对称的基本性质 2.3 轴......

    八年级数学 16.3.1 分式方程教案 人教新课标版

    教学目标: 1.了解分式方程的概念, 和产生增根的原因. 2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 教学方法:引导启发、合作探究、......

    八年级数学上册教案[五篇材料]

    八年级数学上册教案作为一名无私奉献的老师,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。快来参考教案是怎么写的吧!下面是小编为大家收集的八年级......