第一篇:八年级数学上册《矩形、正方形》教案
初中中考数学资源-www.xiexiebang.com 第四章
四边形性质探索
总课时:12课时
执笔人:刘丽娟
使用人: 备课时间:开学第一周上课时间:第七周 第6课时:
4、4矩形、正方形(1)教学目标:
知识与技能
1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.过程与方法
经历探索矩形的性质和判别条件的过程,在直观操作活动和简单的说理过程中发展合情推理能力,主观探索习惯,逐步掌握说理的基本方法.情感态度与价值观
在操作活动过程中,加深对矩形的的认识,以此激发学生的探索精神。
教学重点:本节课的重点是矩形的性质和常用判别方法的理解和掌握。教学难点:本节课的难点是矩形的性质和常用判别方法的综合应用。教学准备:
教具准备:像框;用四根木条制作一个平行四边形教具. 学生用具:皮筋,活动的平行四边形框架. 教学过程
第一环节 巧设情境问题,引入课题(3分钟,学生观考)
给出活动的平行四边形教具,请学生观察当它的内角由锐角变为钝角的过程中,会形成怎样的特殊图形况.(进行演示,如图)进而引入本节课的主题——矩形。然这一过程,也可以通过计算机演示)
第二环节 讲授新课(35分钟,学生小组探究,全班交流)
主要环节:
(1)根据演示过程,请学生尝试给矩形下定义。(2)寻找生活中的矩形。(3)探索矩形的性质。
(4)通过练习,加强学生对矩形性质的理解。(5)矩形的判定。
(6)从对称的角度再认识矩形。
1. 矩形是学生比较熟悉的图形,小学甚至更早学生就已经接触到。但是当时对于矩形的理解和
提供免费优质的数学资源!电影www.xiexiebang.com 认识是停留在表象层面的,即提到矩形,学生往往联想到的是具体的图形和形象,不能离开实物去研究图形。随着学生的思维水平的提高,这里采取的动画的方式,请学生给矩形下定义,就是要让学生在直观从把握矩形的本质特征,从而将对矩形的理解上升到形式化的高度。2. 对矩形性质的探索,采用了类比的方式,在平行四边形性质的基础上加强条件。在讨论的过程中,进一步得到了直角三角形的一个性质(斜边上的中线等于斜边的一半)3. 通过将性质“反过来”的方法(逆命题),得到矩形的判定条件。
第(3)-(6)的主要过程:
拿出准备好的平行四边形活动框架,来做一做:
在一个平行四边形活动框架上,用两根像皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状:
(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?
(2)当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?(3)当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生进行活动,探索矩形的性质)
当∠α是锐角或钝角时,两条对角线是不相等的.
当∠α是直角时,平行四边形变为矩形,这时两条对角线的长度相等.
归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)1. 矩形的对边平行且相等; 2. 矩形的四个角都是直角; 3. 矩形的对角线相等且互相平分; 4. 矩形是轴对称图形.[例1]如图在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 cm.
(1)判定△AOB的形状;(2)求对角线的长。
分析:要判定△AOB的形状,由于∠AOB=60°,所以可
考虑这个三角形是等边三角形.由矩形的性质知:OA=OB.即△AOB是全等三角形.由“有一个角是60°的提供免费优质的数学资源!电影www.xiexiebang.com 等腰三角形是等边三角形”,得出结论. 要求对角线的长可直接应用矩形的性质.
解:(1)在矩形ABCD中,对角线AC与BD互相平分且相等,于是OA=OB. 又∠AOB=60°,可知△AOB是等边三角形.(2)OA=AB=4cm,DB=CA=2OA=8cm. 因此:对角线的长为8cm.提问:对角线相等的平行四边形是怎样的四边形?为什么?与同伴交流.(对角线相等的平行四边形是矩形.)
如图,在 ABCD中,AB=CD,BD=AC,BC=BC ∴△ABC≌△DCB(SSS)
∴∠ABC=∠DCB. 在ABCD中,AB∥CD,∴∠ABC+∠DCB=180° ∴2∠ABC=180°,即∠ABC=90° ∴ABCD是矩形.
∴对角线相等的平行四边形是矩形.
采用逆命题的方式得到矩形的一个判定方法,进一步总结矩形的两个判别方法:
1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.议一议:(展示问题,引导学生讨论 解决.)
① 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.② 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(进一步得到一个关于直角三角形的性质。)
第三环节 新课小结:(2分钟,师生共同总结)
通过本节课的学习,你有什么收获? 第四环节 课后作业习题4、6 A组(优等生):1 B组(中等生):1 C组(后三分之一生):1 教学反思:
提供免费优质的数学资源!电影www.xiexiebang.com
提供免费优质的数学资源!电影www.phdy.net
第二篇:《矩形、菱形、正方形》教案
《矩形、菱形、正方形》教案
【教学目标】
.理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
2.了解两条平行线之间的距离的意义,并会求两条平行线之间的距离.
3.会有条理的思考与表达,并逐步学会分析与综合的思考方法.
4经历矩形的三种判定方法的引导建模和自主建模过程。
【重、难点】
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)重点:会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
难点:综合运用矩形的性质定理与判定定理进行计算与证明.
【教学过程】
一、活动1、模型准备:一天,小丽和吴娟到一个商店准备给今天要过生日的肖华买生日礼物,选了半天,她们俩最后决定买相框送给她,在里面摆放她们三个好朋友的相片,为了保证相框摆放的美观性,她们选择了矩形的相框,那么她们是用什么方法可以知道她们拿的就是矩形相框呢?
2、模型构成与求解分析:度量角
抽象1:矩形的四个角都是直角,反过来,四个角(或三个角)都是直角的四边形是矩形吗?如果是,请给出证明.
已知:在四边形ABD中,∠A=∠B=∠=90°
求证:四边形ABD是矩形。
证明:∵∠A=∠B=90°
∴∠A+∠B=180°
∴AD∥B
同理可证:AB∥D
∴四边形ABD是平行四边形
又∵∠A=90°
∴四边形ABD是矩形
3、归纳总结:有三个角是直角的四边形是矩形
追问:两个角是直角的四边形是矩形吗?为什么?
设计意图:从实际生活中遇到的问题出发,建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。
二、活动2、学生自主建模:
除度量角度之外,她们需要度量什么也能知道做好的相框是矩形呢?
猜测(1)对角线相等的四边形是矩形吗?
猜测(2)当一个平行四边形框架扭动成矩形时,它的两条对角线相等,反过来,对角线相等的平行四边形是矩形吗?如果是,请给出证明.
已知:平行四边形ABD,A=BD。
求证:四边形ABD是矩形。
证明:∵AB=D,B=B,A=BD
∴△AB≌△DB(SSS)
∴∠AB=∠DB
∵
AB//D
∴∠AB+∠DB=180°
∴∠AB=∠DB=90°
又∵
四边形ABD是平行四边形
∴四边形ABD是矩形
2、判断:(1)对角线互相平分且相等的四边形是矩形吗?
3、归纳总结:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
设计意图:再次从实际生活中遇到的问题出发,从另一角度建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。通过生活经验找出平行四边形与矩形对角线的区别。深化学生对“对角线相等的平行四边形是矩形。”的这一基本模型的理解。
三、模型验证与应用
(一)在四边形ABD中,AB=D,AD=B请再添加一个条,使四边形ABD是矩形你添
加的条是_____________
(二)判断题
、对角线相等的四边形是矩形。
2、对角线互相平分且相等的四边形是矩形。
3、有一个角是直角的四边形是矩形。
4、四个角都是直角的四边形是矩形。
、四个角都相等的四边形是矩形。
6、对角线相等且有一个角是直角的四边形是矩形。
7、对角线相等且互相垂直的四边形是矩形。
设计意图:找区别,深化知识。提高学生辨别能力。提高判断能力,能用“说理”来得结论。提高学生“说”的能力。
(三)说一说、练一练:
例1如图,直线l1∥l2,A、是直线l1上任意两点,AB⊥l2,D⊥l2,垂足分别为B、D.线段AB、D相等吗?为什么?
解:由AB⊥l2,D⊥l2,可知AB∥D.
又因为l1∥l2,所以四边形ABD是矩形,AB=D.
定义、性质:
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离。
两条平行线之间的距离处处相等。
练习:
在直线l1上任意取两点E、F,连接EB、ED、FB、FD。问:△EBD与△FBD的面积有何关系?为什么?
设计意图:通过学生应用新知解决问题后,理解两条平行线之间的距离的定义和性质,同时能进行简单的应用,进一步理解“同底等高”的内涵。
例2
如图,在△AB中,点D在AB上,且AD=D=BD,DE、DF分别是∠BD、∠AD的平分线。
问题1:这里有几个等腰三角形?它有什么特殊性质?
问题2:由DE、DF分别是∠BD、∠AD的平分线,你能想到什么?
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)问题3:四边形FDE是矩形吗?为什么?
练习
已知:如图,在△AB中,∠AB=90°,点D是AB的中点,DE、DF分别是△BD
△AD的角平分线。
求证:四边形DEF是矩形。
设计意图:“新知”与“旧知”的结合,题1做铺垫,为题2学生自主书写做
好准备。
a2431163
例3
已知:如图.矩形ABD的对角线A、BD相交于点,且E、F、G、H分别是A、B、、D的中点,求证四边形EFGH是矩形.
变式:
已知:如图,矩形ABD的对角线A、BD相交于点,E、F、G、H分别是A、B、、D上的一点,且AE=BF=G=DH求证:四边形EFGH是矩形
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)
设计意图:在前一题的铺垫下,通过“变式”进一步提高学生应用新知的能力。
四、小结收获:
矩形判定口诀:任意一个四边形,三角直角定矩形。对于平行四边形,一个直角即可定;对线相等也矩形。
五、反馈练习:
.下面说法正确的是()
A.有一个角是直角的四边形是矩形;
B.有两条对角线相等四边形是矩形;
.有一组对边平行,有一个内角是直角的四边形是矩形;
D.有两组对角分别相等,且有一个角是直角的四边形是矩形.
2.矩形的两条对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.
3.如图所示,矩形ABD中,AE平分∠BAD交B于E,∠AE=1°,则下面的结论:①△D是等边三角形;②B=2AB;③∠AE=13°;④S△AE=S△E其中正确的结论有()A.1个
B.2个
.3个
D.4个
第三篇:八年级数学教学案例----矩形
八年级数学教学案例----矩形
知识结构
重难点分析
本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的。教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
3.由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
4.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
矩形教学设计
教学目标
1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。
2.能运用以上性质进行简单的证明和计算。
此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。
小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?
(让学生初步感知矩形与平行四边形的从属关系。)
问题:矩形是特殊的平行四边形,它除了“有一个角是直角”以外,还可能具有哪些平行四边形所没有的特殊性质呢?
问题:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?
说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证明:
证明:在矩形ABCD中,对角线AC、BD相交于点O,AC=BD(矩形的对角线相等)。
,AO=CO
∴在Rt△ABC中,BO是斜边AC上的中线,且。
∴直角三角形斜边上的中线等于斜边的一半。
例题解析
例1:
如图4.5-4,欲求对角线BD的长,由于∠BAD=90°,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件∠AOD=120°出发,应用矩形的性质可知,∠ADB=30°,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:
∵四边形ABCD是矩形,∴AC=BD(矩形的对角线相等)。
∴OA=BO,△AOB是等腰三角形。
∵∠AOD=120°,∴∠AOB=180°-120°= 60°
∴∠AOB是等边三角形。
∴ BO=AB=4cm,∴ BD=2BO=24×4cm=8cm。
小结
1.矩形的定义:
2.归纳总结矩形的性质:
(1)对边平行且相等
(2)四个角都是直角
(3)对角线平行且相等
3.直角三角形斜边上的中线等于斜边的一半。
4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。
作业 :
第四篇:八年级数学正方形说课稿
公开课《正方形》说课稿
安庆市外国语学校
王南林
一、说教材
1、教材地位和作用 《正方形》这节课是新课标沪版数学教材八年级下册第21章第三节的内容。纵观整个初中平面几何教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识,并且具备有初步的观察、操作等活动经验的基础上出现的。本节教材首先从平行四边形出发,给出正方形的定义,然后由正方形的定义导出正方形与菱形、矩形的关系,接着出了正方形的性质;通过设置“思考”栏目,探索四边形成为正方形的条件,最后由例题具体说明正方形的判定方法。这一节课既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
2、教育教学目标 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
⑴知识与技能
①、理解正方形的概念,了解正方形与平行四边形、菱形、矩形的关系.
②、掌握正方形的有关性质和判定方法.
③、能运用正方形的性质解决有关计算和证明问题.
⑵过程与方法
①、通过观察、实验、归纳、类比获得数学猜想,发展学生的合情推理能力,进一步提高学生逻辑思维能力.
②、通过四边形从属关系的教学,渗透集合思想. ⑶情感态度与价值观
①、经历探索正方形有关性质和四边形成为正方形的条件过程,培养学生动手操作的能力、主动探究的习惯和合作交流的意识. ②、通过理解特殊的平行四边形之间的内在联系,培养学生辩证观点.
3、教学重点、难点
学生在小学学过正方形,他们知道正方形的四个角都是直角,四条边相等,正方形的面积等于它的边长的平方。现在的教学是加深学生的理论知识,拓宽他们的知识面。本节课虽然是学习正方形的性质和判定,实际上应起到对平行四边形、菱形、矩形性质的复习、归纳和总结的作用。所以正方形的定义和性质是本章教学的重点。怎样判定一个四边形是正方形,这是本章教学的一个难点。因为没有具体的判定定理,学生不知道人哪里着手来判定一个四边形是正方形,具体证明时,常出现步骤混乱,或多用或少条件的现象,解决这个难点的关键是加强正方形概念的教学,讲清正方形与平行四边形、菱形、矩形的关系。
依据课程标准,在把握教材的基础上,确立如下的教学重点、难点:
教学重点:正方形的定义和性质 教学难点:四边形成为正方形的条件
教学关键:正方形与平行四边形、菱形、矩形的关系
二、说教学方法
1、教法分析
针对本节课的特点,采用“创设情境—合作交流—应用迁移—整理反思”为主线的探究式教学方法。
通过演示模型,回顾小学学过的正方形的知识,导出正方形的概念;然后由学生动手折纸(矩形—正方形),演示菱形、平行四边形的自制教具,以矩形、菱形、平行四边形为基础,引导学生从这三条思路进行探索一个四边形成为正方形的条件;由正方形与平行四边形、菱形、矩形的关系,通过讨论交流、归纳总结出正方形性质定理(边、角、对角线、对称性);最后以课堂练习、例题讲解、问题研讨,加深了对正方形定义、性质的理解,巩固了对判定的的掌握。
整个教学过程中教师通过演示、提问、观察、点拨,充分调动学生非智力因素,动手实践、合作交流,让学生在老师的引导下自始至终处于一种积极思维、主动学习的学习状态。而教师在其中当好课堂教学的组织者、引路人。
2、学法指导
这节几何课是在八年级5班上的一节课。该班学生基础一般,但上课很活跃,有很强的表现欲,通过前一学期的培养,具有一定的独立思考和探究的能力。所以在本节课的教学过程中,设计了让学生演示模型以展示自己的劳动成果,组织语言培养说理能力,进一步提高学生逻辑思维能力.
本节课重点以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习、讨论交流,让学生体验合作学习的乐趣,享受成功的喜悦。
三、说教学过程
(一)创设情境,导入新知
Ⅰ、导言
我们已学习了矩形、菱形,它们都是特殊的平行四边形.
Ⅱ、抢答
1、让学生根据所准备的模型分别叙述矩形、菱形的定义及其性质.
2、平行四边形,矩形,菱形的内在联系.
Ⅲ、引人
演示模型
[问题]根据小学学过的正方形的知识,你能说出正方形的意义吗? [定义]有一组邻边相等,有一个角是直角的平行四边形叫做正方形.
正方形是在什么前提下定义的?
[思考]如果四边形ABCD已经是一个矩形(或者菱形),那么再加上什么条件就可以变为正方形?
(二)合作交流,探究新知 Ⅰ、正方形的判定
[探究] 操作1 你能否利用手中的矩形白纸裁出一个正方形呢?并请你把刚才所做的实验用图形表示出来.然后与邻位同学交流一下,你能说说矩形与正方形的关系吗?
正方形的判定2
有一组邻边相等的矩形是正方形.
操作2 你能否利用手中的可以活动的菱形模型变成一个正方形吗?如何变?请演示并画出图形.
正方形的判定 3 有一个角是直角的菱形是正方形. [练习] 课本P77练习
1、[归纳]正方形与矩形、菱形、平行四边形间的关系
如图.
Ⅱ、正方形的性质
[交流]根据上述关系可知,正方形既是特殊的矩
形、又是特殊的菱形,更是的特殊的平行四边形,你能说出正方形的性质吗?
[点拨]从边、角、对角线等方面考虑.
[归纳]性质1:正方形的四条边都相等,四个角都是直角.
性质2:正方形的两条对角线相等且互相垂直平分,每条对角线平分一组对角.
[问题]正方形是中心对称图形吗? 是轴对称图形吗?
对称性:正方形是中心对称图形;同时还是轴对称图形,它有四条对称轴(两条对角线,两组对边的中垂线),对称轴通过对称中心.
正方形具有平行四边形、矩形、菱形的一切性质.
(三)应用迁移,巩固提高
Ⅰ、[问题] 如图,四边形ABCD是正方形,两条对角线相交于点O.
(1)一条对角线把它分成_______个全等的________ 三角形;(2)两条对角线把它分成_______个全等的________三角形;
图中一共有________个等腰直角三角形;
(3)∠AOB=_____度,∠OAB=_____度.(4)AB: AO: AC=________.
Ⅱ、例
6、如图,点A'、B'、C'、D'分别是正方形ABCD四条边上的点,并且AA'=BB'=CC'=DD'.
求证:四边形A'B'C'D'是正方形.
Ⅲ、[论证]课本第77页练习3:
如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EFGH都是正方形.求证:△ABF≌△DAE.
(四)整理反思、评价体验
通过这节课的学习,我们有哪些收获?
引导学生从知识内容、数学思想方法两方面进行小结.
正方形的定义、判定方法和性质.
1、正方形与 矩形,菱形,平行四边形的关系.
2、正方形的性质: 正方形的性质与平行四边形、矩形、菱形的性质可比较如下:
(师生同完成,凡是图形所具有的性质,在表中相应的空格中填上“√”,没有的性质不要填写)
(五)课后作业
Ⅰ、课本P78习题21.3
3(2)、P89习题A组复习题
Ⅱ、课本P77“阅读与思考----完美矩形与完美正方形”
四、说评价
根据《课程标准》的评价理念,我在整个教学过程中,始终注重的是学生的参与意识,激励学生的学习热情,注重过程评价,发现问题与解决问题评价. 本节课的教学注意挖掘教材中培养创新意识的素材,通过学生动手折纸、演示自制教具,并利用计算机辅助教学,为学生营造一种创新的学习氛围。把学生引上探索问题之路,为学生构造一道亮丽的思维风景线,充分调动学生学习的主动性、积极性,体现学生的主体地位。同时,本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学力水平,使传授知识与培养能力融为一体,体现素质教育的精神。
五、说反思
数学教育的价值并非单纯地通过积累数学事实来实现,它更多地通过对重要的数学思想方法的领悟、对数学活动经验的条理化、对数学知识的自我组织等活动实现。学生的数学学习过程是一个自主构建的过程,他们会带着自己原有的知识背景、活动经验的理解走进学习活动,并通过自己的主动活动,包括独立思考、与他人交流和反思等,去建构对数学的理解。学生的数学学习的过程是一种再创造过程,在这一活动过程中,获得经验、对经验的分析与理解、对获得过程以及活动方式的反思至关重要。
1、在探索正方形判定方法的过程中,充分发挥了学生主体性,让学生经历自主“做数学”的过程——动手折纸、演示自制教具,并播放矩形、菱形、平行四边形的一个角、一组邻边的变化得到正方形课件,成功的达到了学生对正方形直观认识,进而探索出正方形的判定方法。
2、通过一道论证题的研讨,鼓励学生大胆尝试,同时鼓励其他同学进行互帮互助,交流自己解决问题的过程及成功的体验,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作、合作交流和逻辑推理能力,提高学生分析和解决问题的能力,使学生有成功体验。
3、本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生语言描述,然后进行引导交流形成规范语言。小结设置为学生谈自己的感受,培养学生语言表达能力、归纳知识的能力,以及欣赏数学的能力。
第五篇:矩形、正方形(一)教学设计
第四章 四边形性质探索
4.矩形、正方形
(一)教学目标:
知识目标
1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.能力目标
经历探索矩形的性质和判别条件的过程,在直观操作活动和简单的说理过程中发展合情推理能力,主观探索习惯,逐步掌握说理的基本方法.情感与价值观
在操作活动过程中,加深对矩形的的认识,以此激发学生的探索精神。教学重点:本节课的重点是矩形的性质和常用判别方法的理解和掌握。教学难点:本节课的难点是矩形的性质和常用判别方法的综合应用。
教学过程
课前准备:
教具准备:像框;用四根木条制作一个平行四边形教具. 学生用具:皮筋,活动的平行四边形框架. 教学过程设计分成四分环节:
第一环节:巧设情境问题,引入课题 第二环节:讲授新课 第三环节:新课小结 第四环节:布置作业
第一环节 巧设情境问题,引入课题
给出活动的平行四边形教具,请学生观察当它的一个内角由锐角变为钝角的过程中,会形成怎样的特殊图形情况.(进行演示,如图)进而引入本节课的主题——矩形。(当然这一过程,也可以通过计算机演示)
第二环节 讲授新课
主要环节:
(1)根据演示过程,请学生尝试给矩形下定义。(2)寻找生活中的矩形。(3)探索矩形的性质。
(4)通过练习,加强学生对矩形性质的理解。(5)矩形的判定。
(6)从对称的角度再认识矩形。第(3)-(6)的主要过程:
拿出准备好的平行四边形活动框架,来做一做:
在一个平行四边形活动框架上,用两根像皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状:
(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?
(2)当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?(3)当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生进行活动,探索矩形的性质)
当∠α是锐角或钝角时,两条对角线是不相等的.
当∠α是直角时,平行四边形变为矩形,这时两条对角线的长度相等. 归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)1. 矩形的对边平行且相等; 2. 矩形的四个角都是直角; 3. 矩形的对角线相等且互相平分; 4. 矩形是轴对称图形.[例1]如图在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 cm.
(1)判定△AOB的形状;(2)求对角线的长。
分析:要判定△AOB的形状,由于∠AOB=60°,所以可考虑这个三角形是等边三角形.由矩形的性质知:OA=OB.即△AOB是全等三角形.由“有一个角是60°的等腰三角形是等边三角形”,得出结论.
要求对角线的长可直接应用矩形的性质.
解:(1)在矩形ABCD中,对角线AC与BD互相平分且相等,于是OA=OB. 又∠AOB=60°,可知△AOB是等边三角形.(2)OA=AB=4cm,DB=CA=2OA=8cm. 因此:对角线的长为8cm.提问:对角线相等的平行四边形是怎样的四边形?为什么?与同伴交流.(对角线相等的平行四边形是矩形.)
如图,在 ABCD中,AB=CD,BD=AC,BC=BC ∴△ABC≌△DCB(SSS)
∴∠ABC=∠DCB. 在ABCD中,AB∥CD,∴∠ABC+∠DCB=180° ∴2∠ABC=180°,即∠ABC=90° ∴ABCD是矩形.
∴对角线相等的平行四边形是矩形.
议一议:(展示问题,引导学生讨论 解决.)
① 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.② 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(进一步得到一个关于直角三角形的性质。)
第三环节 新课小结: 通过本节课的学习,你有什么收获?(师生共同从知识与鸶性思想方法两方面小结)第四环节 课后作业
(一)看课本
(二)课本习题4.6