第一篇:八年级下册:矩形教案设计
矩形
一、教学目标:
知识与技能:
1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2、会初步运用矩形的概念和性质来解决有关问题.
过程与方法:经历探索矩形的概念和性质的过程,发展学生合情推理的意识;掌
握几何思维方法。并渗透运动联系、从量变到质变的观点.
情感态度与价值观:培养严谨的推理能力,以及自主合的精神,体会逻辑推理的 思维价值。重点:矩形的性质。
难点:矩形的性质的灵活运用。
二、教学过程
1、课堂引入:列举生活中的有关正方形与长方形的事物,并与平行四边形的相关概念结合,引出本课题及矩形定义。
矩形定义:有一个角是直角的平行四边形叫做矩形。
2、学习研究教科书P94的“探究”,让学生思考、交流、归纳后得出矩形的性质: 矩形的性质1:矩形的四个角都是直角; 矩形的性质2:矩形的对角线相等。
3、通过研究矩形的性质,观察矩形的两条对角线,结合教科书P95,图19.2-3,11引导学生利用“等量代换”的相关知识,得到AO=CO=BO=DO=2 AC=2 BD。由此,得到直角三角形的一个重要性质: 直角三角形斜边上的中线等于斜边的一半。
4、例题讲解 教科书P95 例题1:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形的对角线的长。
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求。
5、小牛试刀
①矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为()。A:12cm
B:10cm
C:7.5cm
D:5cm ②已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED。
③如图,矩形ABCD中,AB=2BC,且AB=AE。
求证:∠CBE的度数。
三、课后小结与反思
今天我们主要学习了矩形的定义及性质,矩形是角特殊的平行四边形,决定了矩形的四个角都是直角,对角线相等。由于矩形的对角线把矩形分割成直角三角形,等腰三角形,所以我们还要把直角三角形,等腰三角形,等边三角形的性质、判定好好复习一下,这对于解决矩形问题是大有好处的。
四、作业布置
1、完成新学案相关练习题(P43)
2、家庭作业:教科书P95 练习题T3,习题19.2 T4
第二篇:人教版八年级下册矩形教案
19.2.1矩形
教学目标
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2.会初步运用矩形的概念和性质来解决有关问题.
3.渗透运动联系、从量变到质变的观点
教学重点 矩形的性质
教学难点 矩形的性质的灵活应用
教学方法 讲练结合
教学过程
矩形的概念:有一个角是直角的平行四边形是矩形
思考:矩形和平行四边形的关系
学生举例矩形的实例
2学生分组讨论得出矩形的性质
矩形的性质 矩形的对边平行且相等
矩形的四个角是直角
矩形的对角线相等
3再探新知
已知:在矩形ABCD中,对角线AC、BD交于点O
AC是△ABC的 边 BO是AC边上的 线
BO与AC的数量关系是
结论:直角三角形 斜边上的中线等于斜边的一半
4活学活用
(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.
解:∵ 四边形ABCD是矩形,∴ AC与BD相等且互相平分. ∴ OA=OB. 又
∠AOB=60°,∴
△OAB是等边三角形.
∴
矩形的对角线长AC=BD = 2OA=2×4=8(cm).
5达标检测
(1)矩形的定义中有两个条件:一是
,二是
.
(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为
、、、.
(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为
cm,cm,cm,cm.
6归纳总结
矩形性质1
矩形的四个角都是直角.
矩形性质2
矩形的对角线相等.
7作业 P95 1 2 3
课后反思
第三篇:《矩形》优秀教案设计
教学目标
知识与技能:
了解矩形的有关概念,理解并掌握矩形的有关性质.
过程与方法:
经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.
情感态度与价值观:
培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.
重难点、关键
重点:掌握矩形的性质,并学会应用.
难点:理解矩形的特殊性.
关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.
教学准备
教师准备:投影仪,收集有关矩形的图片,制作教具.
学生准备:复习近平行四边形性质,预习矩形这节内容.
学法解析
1.认知起点:已经学习了三角形、平行四边形,积累了一定的经验的基础上学习本节课内容.
2.知识线索:情境与操作→平行四边形→矩形→矩形性质.
3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.
教学过程
一、联系生活,形象感知
【显示投影片】
教师活动:演示平行四边形的形状变化的动态效果,让学生观察变化,引出发现。
矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).
教师活动:介绍完矩形概念后,为了加深理解也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:
问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)
学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,是属于平行四边形,因此它具有平行四边形所有性质.
问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)
学生活动:由平行四边形对边平行以及刚才变角∠α为90°可以得到∠α的补角也是90°,从而得到矩形四个角都是直角.
性质定理1:矩形的四个角都是直角.
几何语言:∵四边形ABCD是矩形
∴∠A=∠B=∠C=∠D=90度
评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.
教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).
学生活动:观察发现:矩形的两条对角线相等,口述证明过程是:充分利用(SAS)三角形全等来证明.
口述:∵四边形ABCD是矩形
∴∠ABC=∠DCB=90°,AB=DC
又∵BC为公共边
∴△ABC≌△DCB(SAS)
∴AC=BD
性质定理2:矩形的对角线相等.
几何语言:∵四边形ABCD是矩形
∴ AC = BD
教师提问:
1.图中有几个三角形?它们分别是什么三角形?
2.在直角△ABC中,OB与AC之间有什么数量关系?为什么?由此你会得出什么结论?
学生活动:观察、思考后发现AO= AC,BO= BD,BO是Rt△ABC的中线.由此归纳直角三角形的一个性质:
直角三角形斜边上的中线等于斜边的一半.
直角三角形中,30°角所对的边等于斜边的一半(师生回忆).
【设计意图】采用观察、操作、交流、演绎的手法来解决重点突破难点.
二、范例点击,应用所学
例1如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=4cm,求矩形对角线的长.(投影显示)
思路点拨:利用矩形对角线相等且平分得到OA=OB,由于∠AOB=60°,因此,可以发现△AOB为等边三角形,这样可求出OA=AB=4cm,∴AC=BD=2OA=8cm.
【活动方略】
教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程
学生活动:参与教师讲例,总结几何分析思路.
三.随堂练习,巩固深化
1.矩形具有而一般平行四边形不具有的性质是()
A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分
2.判断对错
(1)矩形是平行四边形()
(2)矩形的两条对角线将矩形分成四个面积相等的等腰三角形()
3.已知△ABC是Rt△,∠ABC=90度,BD是斜边AC上的中线。
(1)若BD=3㎝则AC= _______㎝
(2)若∠C=30°,AB=5㎝,则AC=_____ cm, BD=_____ ㎝.4.四边形ABCD是矩形
1.若已知AB=8㎝,AD=6㎝,则AC=_______㎝,OB=_______ ㎝
2.若已知AC=10㎝,BC=6㎝,则矩形的周长=____ cm
矩形的面积=_______
若已知 ∠DOC=120°,AC=8㎝,则AD= _____cm
AB= _____cm
5.矩形的短边长为3cm,两对角线所成的角是60 °,则它的另一边长是_______cm
6.已知矩形对角线长为4cm,一边长为是_______ cm,则矩形的面积是________.四.课堂小结
矩形定义:有一个角是直角的平行四边形叫做矩形.
矩形是轴对称图形。
性质定理1:矩形的四个角都是直角.
性质定理2:矩形的对角线相等.
直角三角形斜边上的中线等于斜边的一半.
五.拓展应用
如右图,在矩形ABCD中,DE平分∠ADC交AC于E,交BC于F,若∠BDF=15度,求∠COF的度数.六.作业
必做题
教与学整体设计练案《矩形第(1)课时》
选做题
如右图:在ABCD矩形中AB=6cm,BC=8cm,将矩形折叠,使B点与点D重合,求折痕EF的长。
第四篇:人教版八年级下册:18.2.1矩形1教案
18.2.1,矩形(1)
课型:新授课
课
堂
笔
记
【教学目标】
1.掌握矩形的性质定理;
2.理解并掌握“直角三角形斜边上的中线等于斜边的一半”;
3.能运用以上两方面的知识解决有关的证明与计算.【教学重点】掌握举行性质定理以及“直角三角形斜边上的中线等于斜边的一半”.【学习导航】
一、知识链接
1平行四边形的定义:
.定义的双重作用:(1)判定,如图1,用几何语言可表示为:
∵
∴;
(图1)
(2)性质,如图1,用几何语言可表示为:
∵
∴;
2..平行四边形性质:(1)边
平行四边形的;
如图1,该性质的几何语言可表示为:∵
∴;
(2)角
平行四边形的;如图1,该性质的几何语言可表示为:
∵
∴
(3)对角线
平行四边形的.如图1,该性质的几何语言可表示为:
∵
∴
(4)对称性
平行四边形是
图形.二、探究活动1
(折纸画图)
①
②
直线n
D
C
B
A
直线m
(图2)
③
(1)拿一张没有字迹的纸,随意对折并压出折痕.然后再折一次,并使前面所折折痕在第二次折叠时重合在一条直线上.打开纸片,并用笔描出两次折叠的折痕,那么,这两条折痕是两条
线,它们的位置关系是,在你所画图形上标上合适的字符,然后说出你的理由,你的理由是
.(2)在前面沿折痕所画的两条线条上分别选择你认为最合适的一点(不与交点重合),标上字母,分别过这两点作另一条折痕的平行线,那么,这两条分别平行于两条折痕的直线与两条折痕共同围成的图形是
形.矩形的定义:
.定义的几何语言(判定方面):∵,∴
定义在性质方面明确了矩形是
形,因此,它具有
形的所有性质.活动2.矩形的特殊性质:
(1)剪下图③中所得的矩形ABCD纸片,分别沿AB和CD的中点所在直线以及AD和BC的中点所在直线对折,两次对折后,你会有什么发现?写下你发现的东西,并与小组同学交流,看看你们的发现是否相同?(我们研究四边形性质的着眼点是、、、.)
总结:一、沿矩形对边中点所在直线对折,直线两旁的部分能够完全重合,说明矩形是轴对称图形,两条对边中点所在直线是对称轴;
D
C
二、通过折叠还可以知道∠A=∠B,∠A=∠D,O
∠B=∠C从而∠A=∠B=∠C=∠D=90°,(图3)
三、连续两次对折后线段OA、OB、OC、OD将会怎样?
显然,它们会完全重合,从而可知对角线AC=BD.A
B
综上所述:矩形是特殊的平行四边形,它除了具有平行四边形的所有性质外,还有以下特殊性质,(1)四个角都相等,都等于90°;(2)对角线相等;(3)是轴对称图形,对称轴是两组对边中点所在直线。
(2)性质的证明
请你完成以下两个证明:1、求证矩形的四个角都是直角;2、求证矩形的对角线相等.(3)观察图3,在RT△ABD中,OA是RT△ABD的线,且OA
OB
OD,用一句话可以总结为:直角三角形斜边上的中线等于
.活动3学以致用
1.(填空)
(1)矩形的定义中有两个条件:一是,二是
.
(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.
(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为
cm,cm,cm,cm.
2.矩形的对角线把矩形分成的三角形中全等三角形一共有().
(A)2对
(B)4对
(C)6对
(D)8对
3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.
四、达标测评
1.矩形是具有而平行四边形不一定具有的性质是____(填代号)
①对边平行且相等;②对角线互相平分;③对角相等
④对角线相等; ⑤4个角都是90°; ⑥轴对称图形
2.矩形是轴对称图形,对称轴是_____又是中心对称图形,对称中心是___矩形两对角线把矩形分成___个等腰三角形.3.矩形的一条对角线长为10,则另一条对角线长为,如果一边长为8,则矩形的面积为
4.矩形ABCD的面积为48,一条边AB的长为6,求矩形的对角线BD的长。
第五篇:2017春八年级数学下册19.1矩形教案
19.1.1 矩形的性质(一)
一、教学目标:
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2.会初步运用矩形的概念和性质来解决有关问题.
3.渗透运动联系、从量变到质变的观点.
二、重点、难点
1.重点:矩形的性质.
2.难点:矩形的性质的灵活应用.
三、例题的意图分析
例1是教材P104的例1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例
2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.
四、课堂引入
1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状. ① 随着∠α的变化,两条对角线的长度分别是怎样变化的?
② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质. 矩形性质1 矩形的四个角都是直角. 矩形性质2 矩形的对角线相等.
如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=11AC=BD.因此可以得到直角三角形的一个性质:直22角三角形斜边上的中线等于斜边的一半.
五、例习题分析
例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.
解:∵ 四边形ABCD是矩形,∴ AC与BD相等且互相平分. ∴ OA=OB.
又 ∠AOB=60°,∴ △OAB是等边三角形.
∴ 矩形的对角线长AC=BD = 2OA=2×4=8(cm).
例2(补充)已知:如图,矩形 ABCD,AB长8 cm,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.
分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.
略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x282(x4)2,解得x=6. 则 AD=6cm.
(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB= AD×AB,解得 AE= 4.8cm.
例3(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC. 求证:CE=EF.
分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.
证明:∵ 四边形ABCD是矩形,∴ ∠B=90°,且AD∥BC. ∴ ∠1=∠2. ∵ DF⊥AE,∴ ∠AFD=90°.
∴ ∠B=∠AFD.又 AD=AE,∴ △ABE≌△DFA(AAS). ∴ AF=BE. ∴ EF=EC.
此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.
六、随堂练习1.(填空)
(1)矩形的定义中有两个条件:一是,二是 .
(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.
(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm,cm,cm,cm. 2.(选择)
(1)下列说法错误的是().
(A)矩形的对角线互相平分(B)矩形的对角线相等
(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对
3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.
七、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().
(A)12cm(B)10cm(C)7.5cm(D)5cm 2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.
3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.
4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.
19.1.2 矩形的判定(二)
一、教学目标:
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入
1.什么叫做平行四边形?什么叫做矩形? 2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形. 矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;(×)
(2)有四个角是直角的四边形是矩形;(√)
(3)四个角都相等的四边形是矩形;(√)
(4)对角线相等的四边形是矩形;(×)
(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2(补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积. 分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵
四边形ABCD是平行四边形,∴ AO=11AC,BO=BD. 22∵ AO=BO,∴ AC=BD. ∴ ABCD是矩形(对角线相等的平行四边形是矩形). 在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴ BC=824243(cm).
例3(补充)
已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD是平行四边形,∴ AD∥BC.
∴ ∠DAB+∠ABC=180°.
又 AE平分∠DAB,BG平分∠ABC,∴ ∠EAB+∠ABG=
1×180°=90°. 2∴ ∠AFB=90°.
同理可证 ∠AED=∠BGC=∠CHD=90°.
∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).
六、随堂练习
1.(选择)下列说法正确的是().
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形
2.已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
七、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH; ⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ; ⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.