八年级数学冀教版下册22.4矩形性质与判定专题

2021-05-14 15:20:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《八年级数学冀教版下册22.4矩形性质与判定专题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级数学冀教版下册22.4矩形性质与判定专题》。

八年级第二十二章

矩形性质与判定专题

1.如图1,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()

A.10°

B.20°

C.30°

D.40°

图1

图2

2.如图2,已知矩形ABCD的对角线AC,BD交于点O,E是AD的中点,连接OE.若OE=3,AD=8,则对角线AC的长为()

A.5

B.6

C.8

D.10

3.如图3,P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()

A.10

B.12

C.16

D.18

图3

图4

图5

4.如图4,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长为()

A.B.C.D.5.如图5,在△ABC中,D是BC边上的点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;

(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

6.在四边形ABCD中,∵∠ABC=∠BCD=∠CDA=________°,∴四边形ABCD是矩形.

7.如图6所示,已知在▱ABCD中,各个内角的平分线相交于点E,F,G,H.(1)猜想EG与FH之间的数量关系;

(2)试证明你猜想的正确性.

图6

8.如图7,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证:DF=AB;

(2)若∠FDC=30°,且AB=4,求AD的长.

图7

9.如图8,矩形ABCD的对角线AC,BD交于点O,以下结论不一定成立的是()

A.∠BCD=90°

B.AC=BD

C.OA=OB

D.OC=CD

10.如图9,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6

cm,则AB的长是()

A.3

cm

B.6

cm

C.10

cm

D.12

cm

图8

图9

图10

11.如图10,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()

A.4.8

B.5

C.6

D.7.2

12.如图11,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()

图11

A.AO=OC

B.AC=BD

C.AC⊥BD

D.BD平分∠ABC

13.在四边形ABCD中,AC,BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()

A.AB=CD,AD=BC,AC=BD

B.AO=CO,BO=DO,∠BAD=90°

C.∠BAD=∠BCD,∠ABC+∠BCD=180°,AC⊥BD

D.∠BAD=∠ABC=90°,AC=BD

14.已知:如图12,矩形ABCD的对角线AC,BD相交于点O,CE∥DB,交AB的延长线于点E.求证:AC=CE.图12

15.如图13,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于点E,F.若AC=2,∠AEO=120°,则FC的长为()

A.1

B.2

C.D.图13

图14

16.如图14,矩形OABC的顶点O与原点重合,点A,C分别在x轴,y轴上,点B的坐标为(-5,4),点D为边BC上一动点,连接OD,若线段OD绕点D顺时针旋转90°后,点O恰好落在AB边上的点E处,则点E的坐标为()

A.(-5,3)

B.(-5,4)

C.(-5,)

D.(-5,2)

17.如图15,E,F分别为△ABC的边BC,AB的中点,延长EF到点D,使得DF=EF,连接DA,DB,AE.(1)求证:四边形ACED是平行四边形;

(2)若AB=AC,试说明四边形AEBD是矩形.

图15

18.如图16,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判定四边形ABCD是矩形的是()

A.AD=BC

B.AB=CD

C.∠DAB=∠ABC

D.∠DAB=∠DCB

图16

图17

19.如图17,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF长的最小值为________.

20.如图18,在△ABC中,点O在AB边上,过点O作BC的平行线交∠ABC的平分线于点D,过点B作BE⊥BD交直线OD于点E,连接AE,AD.(1)求证:OE=OD;

(2)当点O在AB的什么位置时,四边形BDAE是矩形?请说明理由.

图18

下载八年级数学冀教版下册22.4矩形性质与判定专题word格式文档
下载八年级数学冀教版下册22.4矩形性质与判定专题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    矩形的性质与判定

    矩形的性质与判定 矩形的性质和判定 定义:有一个角是直角的平行四边形叫做矩形.性质:①矩形的四个角都是直角; ②矩形的对角线相等 . 注意:矩形具有平行四边形的一切性质 .判定:......

    八年级数学下册:18.2.1矩形的判定学案

    课题:18.2.1矩形的判定学习目标:1、理解矩形判定的探究过程。2、掌握矩形判定定理的应用。教学重点:矩形的判定定理教学难点:定理的证明方法及运用一.预习导学矩形的定义及性质:预......

    矩形的性质与判定复习学案

    ┄┄矩形的性质与判定复习学案 【知识要点:】 1.矩形的定义:有一个角是直角的平行四边形是矩形 2.矩形的性质:矩形具有平行四边形的所有性质。(1)角:四个角都是直角。 (2)对角线:互相......

    矩形的性质与判定教学设计

    1.2 矩形的性质与判定 教学目标 知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质。过程与方法:经过探索矩形的概念和性质的过程,发展学生合情理意识,掌握几何思维方法......

    《矩形的性质与判定》教学反思

    本节课主要讲解的是矩形的性质与判定,本节课一共分为5个环节。在环节一知识回顾,由平行四边形入手,通过直观观察平行四边形与矩形内角的异同以及观察平行四边形与矩形的形状特......

    人教版数学八年级下册18.1平行四边形的性质与判定

    平行四边形的性质与判定一.知识梳理1.平行四边形的性质:四边形ABCD是平行四边形Þ2.平行四边形的判定:二.例题讲解例1.在中,,周长=18,则.例2.在中,已知这个平行四边形各内角的大小分......

    矩形的判定(教学案)

    矩形的判定(1)(教学案) ◆课时类型:新知探究课 ◆学习目标:①理解矩形的三种判定(含定义)方法;②能应用矩形的定义、判定等知识证明和计算;③进一步提高自己的分析和论证能力。 ◆学习......

    八年级数学下册 24.3平行线的判定定理教案 冀教版

    亿库教育网http://www.xiexiebang.com 24.3平行线的判定定理 教学目标 1. 理解和掌握平行线的判定公理及两个判定定理. 2. 通过经历探索平行线的判定方法的过程,发展学生的逻......