课题:18.2.1矩形的判定
学习目标:
1、理解矩形判定的探究过程。
2、掌握矩形判定定理的应用。
教学重点:矩形的判定定理
教学难点:定理的证明方法及运用
一.
预习导学
矩形的定义及性质:
预习P53-P54,完成下列问题:
1.下列说法错误的是()
(A)有一个内角是直角的平行四边形是矩形
(B)矩形的四个角都是直角,并且对角线相等
(C)对角线相等的平行四边形是矩形
(D)有两个角是直角的四边形是矩形
2.平行四边形内角平分线能够围成的四边形是()
(A)梯形
(B)矩形
(C)正方形
(D)不是平行四边形
3.如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是().
(A)一组对边平行而另一组对边不平行;(B)对角线相等
(C)对角线互相垂直;
(D)对角线互相平分
4.矩形的判定方法:(作图、证明)
二、课堂导学
5、已知□ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)平行四边形是矩形吗?说明你的理由.(2)求这个平行四边形的面积.
6、如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.请回答问题并说明理由:
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
二次备课教案:
三、自主检测
1.在□ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形
2如图,BO是Rt△ABC斜边上的中线,延长BO至点D,使BO=DO,连结AD,CD,则四边形ABCD是矩形吗?请说明理由.
3.如图所示,在四边形ABCD中,∠A=∠ABC=90°,BD=CD,E是BC的中点,求证:四边形ABED是矩形.
4.如图所示,在平行四边形ABCD中,M是BC的中点,∠MAD=∠MDA,求证:四边形ABCD是矩形.
5、如图,M、N分别是平行四边形ABCD对边AD、BC的中点,且AD=2AB,求证,四边形PMQN是矩形。
板书设计:
教学反思: