第一篇:平行四边形、矩形、菱形、正方形性质定理总结
平行四边形、矩形、菱形、正方形性质定理总结(耿培灏制)
平行四边形的性质:
平行四边形的对边相等、对角相等、对角线互相平分.平行四边形的判定定理:
两组对边分别平行的四边形叫做平行四边形.
两组对边分别相等的四边形是平行四边形.
一组对边平行且相等的四边形是平行四边形.
对角线互相平分的四边形是平行四边形.
两组对角分别相等的四边形是平行四边形.(不能在证明题中作为依据使用.)
矩形的特有性质:
矩形的四个角都是直角,对角线相等.矩形的判定定理:
有一个角是直角的平行四边形是矩形. 三个角是直角的四边形是矩形.
对角线相等的平行四边形是矩形.
菱形的特有性质:
菱形的四条边相等,对角线互相垂直.菱形的判定定理:
有一组邻边相等的平行四边形叫做菱形.
对角线互相垂直的平行四边形
四条边都相等的四边形
正方形的性质:
对称性----既是中心对称图形,又是轴对称图形.
边----对边平行,4条边都相等.
角----4个角都是直角.
对角线----对角线相等、垂直且互相平分.
正方形的判定定理:
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. 有一组邻边相等的矩形是正方形.
有一个角是直角的菱形是正方形.
第二篇:平行四边形、矩形、菱形、正方形练习证明题
1、已知如图,在□ABCD中,E、F分别是边BC和AD上的点,且BE=DF。求证:AE=CF
2如图,在□ABCD中,∠ADC的平分线与AB相交于点E,求证:BE+BC=CD
3、如图,在△ABC中,AB=AC,点D是BC的中点,过点A、D分别作BC于AB的平行线,并交于点E,连接EC、AD,求证四边形ADCE是矩形。
4、如图,在△ABC中,AB=AC,AD ⊥BC,垂足为点D,AG是 △ABC的外角 ∠FAC 的平分线,DE ‖AB , 交AG于点E,求证:四边形ADCE是矩形.
5、如图,已知菱形ABCD的边长为2cm,∠BAD=120°,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长.
6、如图,G、H是□ABCD对角线AC上的两点,且AG=CH,E、F分别是边AB和CD的中点,求证:四边形EHFG 是平行四边形。
7、如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H,EK和GH相交于点F。求证:GE与FD互相垂直平分。
8、如图,在△ABC中,∠C=90°,∠CAB、∠CBA的平分线相交于点D,DE⊥BC于点E,DF⊥AC于点F,求证:
(1)四边形CFDE是矩形。(2)四边形CFDE是正方形。
第三篇:《矩形、菱形、正方形》教案
《矩形、菱形、正方形》教案
【教学目标】
.理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
2.了解两条平行线之间的距离的意义,并会求两条平行线之间的距离.
3.会有条理的思考与表达,并逐步学会分析与综合的思考方法.
4经历矩形的三种判定方法的引导建模和自主建模过程。
【重、难点】
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)重点:会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
难点:综合运用矩形的性质定理与判定定理进行计算与证明.
【教学过程】
一、活动1、模型准备:一天,小丽和吴娟到一个商店准备给今天要过生日的肖华买生日礼物,选了半天,她们俩最后决定买相框送给她,在里面摆放她们三个好朋友的相片,为了保证相框摆放的美观性,她们选择了矩形的相框,那么她们是用什么方法可以知道她们拿的就是矩形相框呢?
2、模型构成与求解分析:度量角
抽象1:矩形的四个角都是直角,反过来,四个角(或三个角)都是直角的四边形是矩形吗?如果是,请给出证明.
已知:在四边形ABD中,∠A=∠B=∠=90°
求证:四边形ABD是矩形。
证明:∵∠A=∠B=90°
∴∠A+∠B=180°
∴AD∥B
同理可证:AB∥D
∴四边形ABD是平行四边形
又∵∠A=90°
∴四边形ABD是矩形
3、归纳总结:有三个角是直角的四边形是矩形
追问:两个角是直角的四边形是矩形吗?为什么?
设计意图:从实际生活中遇到的问题出发,建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。
二、活动2、学生自主建模:
除度量角度之外,她们需要度量什么也能知道做好的相框是矩形呢?
猜测(1)对角线相等的四边形是矩形吗?
猜测(2)当一个平行四边形框架扭动成矩形时,它的两条对角线相等,反过来,对角线相等的平行四边形是矩形吗?如果是,请给出证明.
已知:平行四边形ABD,A=BD。
求证:四边形ABD是矩形。
证明:∵AB=D,B=B,A=BD
∴△AB≌△DB(SSS)
∴∠AB=∠DB
∵
AB//D
∴∠AB+∠DB=180°
∴∠AB=∠DB=90°
又∵
四边形ABD是平行四边形
∴四边形ABD是矩形
2、判断:(1)对角线互相平分且相等的四边形是矩形吗?
3、归纳总结:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
设计意图:再次从实际生活中遇到的问题出发,从另一角度建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。通过生活经验找出平行四边形与矩形对角线的区别。深化学生对“对角线相等的平行四边形是矩形。”的这一基本模型的理解。
三、模型验证与应用
(一)在四边形ABD中,AB=D,AD=B请再添加一个条,使四边形ABD是矩形你添
加的条是_____________
(二)判断题
、对角线相等的四边形是矩形。
2、对角线互相平分且相等的四边形是矩形。
3、有一个角是直角的四边形是矩形。
4、四个角都是直角的四边形是矩形。
、四个角都相等的四边形是矩形。
6、对角线相等且有一个角是直角的四边形是矩形。
7、对角线相等且互相垂直的四边形是矩形。
设计意图:找区别,深化知识。提高学生辨别能力。提高判断能力,能用“说理”来得结论。提高学生“说”的能力。
(三)说一说、练一练:
例1如图,直线l1∥l2,A、是直线l1上任意两点,AB⊥l2,D⊥l2,垂足分别为B、D.线段AB、D相等吗?为什么?
解:由AB⊥l2,D⊥l2,可知AB∥D.
又因为l1∥l2,所以四边形ABD是矩形,AB=D.
定义、性质:
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离。
两条平行线之间的距离处处相等。
练习:
在直线l1上任意取两点E、F,连接EB、ED、FB、FD。问:△EBD与△FBD的面积有何关系?为什么?
设计意图:通过学生应用新知解决问题后,理解两条平行线之间的距离的定义和性质,同时能进行简单的应用,进一步理解“同底等高”的内涵。
例2
如图,在△AB中,点D在AB上,且AD=D=BD,DE、DF分别是∠BD、∠AD的平分线。
问题1:这里有几个等腰三角形?它有什么特殊性质?
问题2:由DE、DF分别是∠BD、∠AD的平分线,你能想到什么?
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)问题3:四边形FDE是矩形吗?为什么?
练习
已知:如图,在△AB中,∠AB=90°,点D是AB的中点,DE、DF分别是△BD
△AD的角平分线。
求证:四边形DEF是矩形。
设计意图:“新知”与“旧知”的结合,题1做铺垫,为题2学生自主书写做
好准备。
a2431163
例3
已知:如图.矩形ABD的对角线A、BD相交于点,且E、F、G、H分别是A、B、、D的中点,求证四边形EFGH是矩形.
变式:
已知:如图,矩形ABD的对角线A、BD相交于点,E、F、G、H分别是A、B、、D上的一点,且AE=BF=G=DH求证:四边形EFGH是矩形
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)
设计意图:在前一题的铺垫下,通过“变式”进一步提高学生应用新知的能力。
四、小结收获:
矩形判定口诀:任意一个四边形,三角直角定矩形。对于平行四边形,一个直角即可定;对线相等也矩形。
五、反馈练习:
.下面说法正确的是()
A.有一个角是直角的四边形是矩形;
B.有两条对角线相等四边形是矩形;
.有一组对边平行,有一个内角是直角的四边形是矩形;
D.有两组对角分别相等,且有一个角是直角的四边形是矩形.
2.矩形的两条对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.
3.如图所示,矩形ABD中,AE平分∠BAD交B于E,∠AE=1°,则下面的结论:①△D是等边三角形;②B=2AB;③∠AE=13°;④S△AE=S△E其中正确的结论有()A.1个
B.2个
.3个
D.4个
第四篇:《四边形》专题训练——证明题(平行四边形,矩形,菱形,正方形)
《四边形》专题训练
(一)————证明题,求解题专题训练
1.中,∠C=60°,DE⊥AB于E,DF⊥BC于F;
(1)求∠EDF的度数;
(2)若AE=4,CF=7,求的周长。
2.如图,已知的周长是32㎝,BC
(1)求∠C的度数;
(2)求BE、DF的长。
3.如图,在矩形ABCD中,DE⊥AC于E,AE:EC=3:1,若DC=6㎝,求AC的长。
4.如图,在矩形ABCD中,AB=2BC,E在AB延长线上,∠BCE=60°,求∠ADE.1 D 35AB,AE⊥BC,AF⊥CD,E、F是垂足,且∠EAF=2∠C; D C B E D C C
5.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.(1)求∠ABC的度数;(2)求对角线AC的长;
(3)求菱形ABCD的面积。
D
C
6.如图,将
中的对角线BD向两个方向延长至点E和点F,使BE=DF,求证:四边形AECF是平行四边形。
7.中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N,求证:四边形MFNE是平行四边形。
A
F
A E
D
C
8.如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.A
9.如图,在中,E,F为BC上两点,且BE=CF,AF=DE.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形。
10已知:如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形。
F
C
A
D
A
F
C
11.如图,已知点E、F在正方形ABCD的对角线AC上,AE=CF.求证:四边形BFDE是菱形.12.如图,在△ABC中,∠ACB=90°,CD平分∠ACB,DE∥BC,DF∥AC,分别交AC、BC于E、F.求证:四边形DECF是正方形.13.如图,在正方形ABCD中,F是AC上一点,FC=BC,EF⊥AC交AB于E,求证:AF=EB.C
D
D
C
A
D
第五篇:九年级数学上册《1.3平行四边形、矩形、菱形、正方形的性质与判定(第1课时)》学案
《1.3平行四边形、矩形、菱形、正方形的性质与判定(第1课时)》
学案
【学习目标】
1、A会证明平行四边形的性质定理及其相关结论
2、B.能运用平行四边形的性质定理进行计算与证明
3、C.在进行探索、猜想、证明的过程中,进一步发展推理论证的能力 【学习重、难点】
重点:平行四边形的性质证明表达格式的逻辑性 完整性 精炼性 难点:分析 综合 思考的方法 【情境创设】
从上面的几种特殊四边形的性质中,你能说说它们之间有什么联系与区别吗? 如图AB//AB,BC//BC,CA//CA,图中有______个平行四边形。
【合作交流】
活动
1、上表中平行四边形的性质中,你能证明哪些性质?
''
''
''
活动
2、你认为平行四边形性质中,可以先证明哪一个?为什么?
活动
3、证明定理“平行四边形对角线互相平分”。
【典题选讲】
例1.A.已知,如图,在平行四边形ABCD中,对角线AC、BD相交于点O,求证:AO=CO,BO=DO
A D41 O
BC
由此证明过程,同时也证明了定理“平行四边形对边相等”、“平行四边形对角相等”,这样我们可得平行四边形的三条性质定理:
平行四边形对边相等。
平行四边形对角相等。
平行四边形对角线互相平分。
例
2、B.证明“夹在两条平行线之间的平行线段相等”
分析:根据命题先画出相应图形,再由命题与所画图形写出已知、求证,最后根据已知条件写出证明过程。
例
3、C.已知:如图,□ ABCD中,E、F分别是CD、AB的中点。求证:
AE=CF
【课堂练习】
1、A.已知:如图,在平行四边形ABCD中,AB=8cm,0BC=10cm,∠C=120,求BC边上的高AH的长;
求平行四边形ABCD的面积D
2.B.若平行四边形ABCD的两条对角线AC与BD相交于O,已知AB=8,BC=6,△AOB的周长为18,求△AOD的周长。
3.C.已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.ADBE
体会】 引导学生自我归纳总结:
1、平行四边形对边相等,对角相等,邻角互补,对角线互相平分。
2、是中心对称图形,两条对角线的交点是对称中心。
3、平行线之间的距离处处相等。【学习