第一篇:有关平行四边形的性质,定理的证明
第五课时有关平行四边形的性质,定理的证明
一. 本章节知识点
1、掌握平行四边形的性质定理“平行四边形的两组对边分别相等、平行四边形的对角线互相平分、平行四边形的对角相等”。
2、会应用平行四边形的上述定理解决简单几何问题。
3、通过探索平行四边形的性质,进一步发展学生的逻辑推理能力及条理的表达能力。
4、在以平行四边形为载体为证明线段(或角)相等的问题中,•通常证明这些线段(或角)
所在的四边形是平行四边形,再由平行四边形的性质来证明,而不要仅仅停留在证三角形全等上.在学习时,应熟练掌握平行四边形的性质及判别方法,注意图形变换的一些特征,善于从折叠、旋转等几何变换中寻求已知条件.
二.典型例题
例 1.已知:如图,在中,那么OE、OF是否相等,说明理由.
交于点O,过O点作EF交AB、CD于E、F,分析观察图形,证明:
在,∴
∴,∴,则________,ABCD的周长=______.中,交于O,∴,从而可说明例2.O是ABCD对角线的交点,的周长为59,若与的周长之差为15,则______,解答:ABCD中,.∴的周长
∴
.在ABCD中,的周长-
.∴的周长
∴
∴
ABCD的周长
与的周长的差转化为两条
说明:本题考查平行四边形的性质,解题关键是将线段的差.例3.已知:如图,ABCD的周长是,由钝角顶点D向AB,BC引两条高DE,DF,且
.求这个平行四边形的面积
.解答:设
.∵ 四边形ABCD为平行四边形,∴
.①
又∵四边形ABCD的周长为36,∴∵
∴
∴
②
.,解由①,②组成的方程组,得∴
.说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.例4如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE•与DF
有怎样的位置关系和数量关系?并对你的猜想加以证明.
解析猜想:BE∥DF,BE=DF.
证法一:如图1,∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2.又∵CE=AF,∴△BCE≌△DAF.∴BE=DF,∠3=∠4,∴BE∥DF.
证法二:如图2,连结BD,交AC于点O,连结DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO.又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE//DF. 三.习题演练
一、选择题
1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()
A.AD∥BC, AD=BCB.AB=DC,AD=BCC.AB∥DC,AD=BC
D.OA=OC,OD=OB
2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和
3B.3和
2C.4和
1D.1和
4E 第2 题图
3.如图,在平行四边形ABCD中,AC,BD相交于点O
.下列结论中正确的个数有()
结论:①OAOC,②BADBCD,③ACBD,④BADABC180. A.1个
B.2个
C.3个
A第3题图
C
D.4个
4.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)(5,0)(2,3),则顶点C的坐标是()A.(3,7)
二、填空题
B.(5,3)
C.(7,3)
D.(8,2)
x
5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是(添加一个条件即可).
6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______, ∠D=_________。
7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。8.如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC12,BD10,ABm,那么m的取值范围是___________。
三.课后作业
AD
C
第5题图
C
A第7题图
9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD相交于M、N,你认为OM、ON有什么关系?为什么?
10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明BE=CF。
四.参考答案
一、选择题C、B、C、C
二、填空题5.答案不唯一,可以是:ABCD或AD∥BC等。6.130,507.16cm8.1m1
1三、解答题 9.解:OM=ON
证明:∵平行四边形ABCD
∴OB=OD , AB∥CD∴∠ABD=∠CDB
又∵∠BOM=∠DON ∴△BOM≌△DON∴OM=ON。
10.解:∵BD平分∠ABC
∴∠ABD=∠DBC
∵DE∥BC,∴∠EDB=∠DBC ∴∠ABD=∠EDB ∴BE=ED
∵DE∥BC,EF∥AC
∴四边形EFCD是平行四边形 ∴CF=ED ∴BE=CF。
第二篇:平行四边形的性质定理和判定定理及其证明
4.1平行四边形的性质定理和判定定理及其证明
姓名:成绩:
1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC, AD=BCB.AB=DC,AD=BC C.AB∥DC,AD=BC
D.OA=OC,OD=OB
2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和
3B.3和
2C.4和
1D.1和
4E 3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180.
A
D.4个
第3题图
A.1个B.2个C.3个
4.能够判别一个四边形是平行四边形的条件是()
A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行 5.下列条件中不能确定四边形ABCD是平行四边形的是()
A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC 6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()
A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88° 7.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()
A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180° 8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()
A.1个B.2个C.3个D.4个
二、填空题
5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是
(添加一个条件即可)
6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,∠D=_________。7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。
如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF
为平行四边形.
D
第5题图
C
C
A第7题图
9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD
相交于M、N,你认为OM、ON有什么关系?为什么?
10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明
BE=CF。
A
12.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?
13.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由
.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?
若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).
第三篇:平行四边形的性质定理和判定定理及其证明同步练习
平行四边形的性质定理和判定定理及其证明
一、选择题
1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()
A.AD∥BC, AD=BCB.AB=DC,AD=BC
C.AB∥DC,AD=BC
D.OA=OC,OD=OB
2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和
3B.3和
2C.4和
1E 第2 题图
D.1和
4∠D=_________。
7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。8.如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC12,BD10,ABm,那么m的取值范围是___________。
三、解答题
9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD相交于M、N,你认为OM、ON有什么关系?为什么?C
C
A
第7题图
A
3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180. A.1个
B.2个
C.3个
D.4个
4.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)(5,0)(2,3),则顶点C的坐标是()A.(3,7)
二、填空题
B.(5,3)C.(7,3)D.(8,2)
10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明BE=CF。
x
5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是(添加一个条件即可). 6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,
D
第5题图
C
∴BE=CF。
参考答案
一、选择题C、B、C、C
二、填空题5.答案不唯一,可以是:ABCD或AD∥BC等。
6.130,507.16cm8.1m1
1三、解答题
9.解:OM=ON
证明:∵平行四边形ABCD
∴OB=OD , AB∥CD
∴∠ABD=∠CDB
又∵∠BOM=∠DON
∴△BOM≌△DON
∴OM=ON。
10.解:∵BD平分∠ABC
∴∠ABD=∠DBC
∵DE∥BC,∴∠EDB=∠DBC
∴∠ABD=∠EDB
∴BE=ED
∵DE∥BC,EF∥AC
∴四边形EFCD是平行四边形
∴CF=ED
第四篇:证明、公理、平行线性质定理
证明的必要性、公理与定理、平行线的判定(公)定理、平行线的性质(公)定理
基础知识1.证明:
2.公理:3.定理:
4.等量代换:公理:
5.平行线的判定定理:定理:公理
6.平行线的性质定理定理:基础习题 1.下列说法正确的是()
A.所有的定义都是命题B.所有的定理都是命题
C.所有的公理都是命题D.所有的命题都是定理 22.若P(P5)是一个质数,而P1除以24没有余数,则这种情况()
A.绝不可能B.只是有时可能
C.总是可能D.只有当P=5时可能
3.下列关于两直线平行的叙述不正确的是()
A.同位角相等,两直线平行;B.内错角相等,两直线平行毛
C.同旁内角不互补,两直线不平行;D.如果a∥b,b⊥c,那么a∥c 14.如左图,下列说法错误的是()lllll3A、∵∠1=∠2,∴3∥4B、∵∠3=∠4,∴3∥4 lllll4C、∵∠1=∠3,∴3∥4D、∵∠2=∠3,∴1∥2 ll55.已知:如图,下列条件中,不能判断直线1∥2的()l1A、∠1=∠3B、∠2=∠
3C、∠2=∠4D、∠4+∠5=180 6.若两条平行线被第三条直线所截,则下列说法错误的()l
2A、一对同位角的平分线互相平行B、一对内错角的平分线互相平行
C、一对同旁内角的平分线互相平行D、一对同旁内角的平分线互相垂直
7.如图,AB∥CD,∠α=()BAA、50°B、80°C、85°D、95° C8.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=()AB
A、50°B、130°C、100°D、50°或130° 9.如图,AB∥CD,AD、BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是()A、31°B、35° C、41°D、76°
填空
10.如图,(1)如果AB∥CD,必须具备条件∠______=∠________,D根据是____________________。(2)要使AD∥BC,必须具备条件∠______=∠________,根据是
4____________________。B
11.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是________。
D12.如图,已知∠1=30°,∠B=60°,AB⊥AC。(1)计算:∠DAB+∠B=
(2)AB与CD平行吗?()AD与BC平行吗?()B
简答题:
13.如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∥BE 证明:∵DF平分∠ADE(已知)A 1∴________=∠ADE()
2∵∠ADE=60°(已知)D∴_________________=30°()
∵∠1=30°(已知)
∴____________________()BC∴____________________()
14.已知:如图,∠B=∠C.(1)若AD∥BC,求证:AD平分∠EAC;
(2)AD平分∠EAC,求证:AD∥BC.15、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.能力提升
16.(1)如图(1),AB∥EF.求证:(1)∠BCF=∠B+∠F.(2)当点C在直线BF的右侧时,如
图(2),若AB∥EF,则∠BCF与∠B,∠F的关系如何?请说明理由.D
BC
第五篇:平行四边形、矩形、菱形、正方形性质定理总结
平行四边形、矩形、菱形、正方形性质定理总结(耿培灏制)
平行四边形的性质:
平行四边形的对边相等、对角相等、对角线互相平分.平行四边形的判定定理:
两组对边分别平行的四边形叫做平行四边形.
两组对边分别相等的四边形是平行四边形.
一组对边平行且相等的四边形是平行四边形.
对角线互相平分的四边形是平行四边形.
两组对角分别相等的四边形是平行四边形.(不能在证明题中作为依据使用.)
矩形的特有性质:
矩形的四个角都是直角,对角线相等.矩形的判定定理:
有一个角是直角的平行四边形是矩形. 三个角是直角的四边形是矩形.
对角线相等的平行四边形是矩形.
菱形的特有性质:
菱形的四条边相等,对角线互相垂直.菱形的判定定理:
有一组邻边相等的平行四边形叫做菱形.
对角线互相垂直的平行四边形
四条边都相等的四边形
正方形的性质:
对称性----既是中心对称图形,又是轴对称图形.
边----对边平行,4条边都相等.
角----4个角都是直角.
对角线----对角线相等、垂直且互相平分.
正方形的判定定理:
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. 有一组邻边相等的矩形是正方形.
有一个角是直角的菱形是正方形.