利用平行四边形判断定理证明四边形为平行四边形讲义

时间:2019-05-13 08:38:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《利用平行四边形判断定理证明四边形为平行四边形讲义》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《利用平行四边形判断定理证明四边形为平行四边形讲义》。

第一篇:利用平行四边形判断定理证明四边形为平行四边形讲义

利用平行四边形判断定理证明四边形为平行四边形讲义

1、如图: DE是△ABC的中位线,F是BC边的中点,连接EF,求证:四边形AFED是平行四边形.证法一:(利用两组对边分别平行的四边形是平行四边形证明)

证法三:(利用两组对边分别相等的四边形是平行四边形证明)

证法四:(利用两组对角分别相等的四边形是平行四边形证明)

证法五:(利用对角线互相平分的四边形是平行四边形证明,自己添加对角线)

C D A F E 证法二:(利用一组对边平行且相等的四边形是平行四边形证明)

第二篇:有关平行四边形的性质,定理的证明

第五课时有关平行四边形的性质,定理的证明

一. 本章节知识点

1、掌握平行四边形的性质定理“平行四边形的两组对边分别相等、平行四边形的对角线互相平分、平行四边形的对角相等”。

2、会应用平行四边形的上述定理解决简单几何问题。

3、通过探索平行四边形的性质,进一步发展学生的逻辑推理能力及条理的表达能力。

4、在以平行四边形为载体为证明线段(或角)相等的问题中,•通常证明这些线段(或角)

所在的四边形是平行四边形,再由平行四边形的性质来证明,而不要仅仅停留在证三角形全等上.在学习时,应熟练掌握平行四边形的性质及判别方法,注意图形变换的一些特征,善于从折叠、旋转等几何变换中寻求已知条件.

二.典型例题

例 1.已知:如图,在中,那么OE、OF是否相等,说明理由.

交于点O,过O点作EF交AB、CD于E、F,分析观察图形,证明:

在,∴

∴,∴,则________,ABCD的周长=______.中,交于O,∴,从而可说明例2.O是ABCD对角线的交点,的周长为59,若与的周长之差为15,则______,解答:ABCD中,.∴的周长

.在ABCD中,的周长-

.∴的周长

ABCD的周长

与的周长的差转化为两条

说明:本题考查平行四边形的性质,解题关键是将线段的差.例3.已知:如图,ABCD的周长是,由钝角顶点D向AB,BC引两条高DE,DF,且

.求这个平行四边形的面积

.解答:设

.∵ 四边形ABCD为平行四边形,∴

.①

又∵四边形ABCD的周长为36,∴∵

.,解由①,②组成的方程组,得∴

.说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.例4如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE•与DF

有怎样的位置关系和数量关系?并对你的猜想加以证明.

解析猜想:BE∥DF,BE=DF.

证法一:如图1,∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2.又∵CE=AF,∴△BCE≌△DAF.∴BE=DF,∠3=∠4,∴BE∥DF.

证法二:如图2,连结BD,交AC于点O,连结DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO.又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE//DF. 三.习题演练

一、选择题

1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()

A.AD∥BC, AD=BCB.AB=DC,AD=BCC.AB∥DC,AD=BC

D.OA=OC,OD=OB

2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和

3B.3和

2C.4和

1D.1和

4E 第2 题图

3.如图,在平行四边形ABCD中,AC,BD相交于点O

.下列结论中正确的个数有()

结论:①OAOC,②BADBCD,③ACBD,④BADABC180. A.1个

B.2个

C.3个

A第3题图

C

D.4个

4.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)(5,0)(2,3),则顶点C的坐标是()A.(3,7)

二、填空题

B.(5,3)

C.(7,3)

D.(8,2)

x

5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是(添加一个条件即可).

6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______, ∠D=_________。

7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。8.如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC12,BD10,ABm,那么m的取值范围是___________。

三.课后作业

AD

C

第5题图

C

A第7题图

9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD相交于M、N,你认为OM、ON有什么关系?为什么?

10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明BE=CF。

四.参考答案

一、选择题C、B、C、C

二、填空题5.答案不唯一,可以是:ABCD或AD∥BC等。6.130,507.16cm8.1m1

1三、解答题 9.解:OM=ON

证明:∵平行四边形ABCD

∴OB=OD , AB∥CD∴∠ABD=∠CDB

又∵∠BOM=∠DON ∴△BOM≌△DON∴OM=ON。

10.解:∵BD平分∠ABC

∴∠ABD=∠DBC

∵DE∥BC,∴∠EDB=∠DBC ∴∠ABD=∠EDB ∴BE=ED

∵DE∥BC,EF∥AC

∴四边形EFCD是平行四边形 ∴CF=ED ∴BE=CF。

第三篇:证明平行四边形

证明平行四边形

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。

求证:四边形ADFE是平行四边形。

设BC=a,则依题意可得:AB=2a,AC=√3a,等边△ABE,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a

∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴DF=√(AD²+AF²)=2a

∴AE=DF=2a,EF=AD=√3a=>四边形ADFE是平行四边形

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形

1、两组对边分别平行的四边形是平行四边形

2、一组对边平行且相等的四边形是平行四边形

3、两组对边分别相等的四边形是平行四边形

4、对角线互相平分的四边形是平行四边形

21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。

性质9(8)矩形菱形是轴对称图形。(9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一种特殊的平行四边形。(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(11)平行四边形对角线把平行四边形面积分成四等分。(12)平行四边形是中心对称图形,但不是轴对称图形。(13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。编辑本段平行四边形中常用辅助线的添法

一、连接对角线或平移对角线。

二、过顶点作对边的垂线构成直角三角形。

三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。

四、连接顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。

五、过顶点作对角线的垂线,构成线段平行或三角形全等。编辑本段面积与周长

1、(1)平行四边形的面积公式:底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah(2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,@表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sin@

2、平行四边形周长可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)底×1X高

第四篇:平行四边形证明

1、已知:如图BD是平行四边形ABCD的对角线,E、F在BD上,且BE=DF.求证:四边形AECF是平行四边形.

2、已知:如图,ABCD中,AC是对角线,AE=CF,AM=CN.求证:MFNE是平行四边形

.3、已知:如图,四边形ACED是平行四边形,B是EC延长线上一点,且BC=CE,求证:四边形ABCD是平形四边形.

4、已知:如图,平形四边形ABCD中,AC是对角线,E,F是AC上的点,且AE=CF,点M、N在AB、CD上,且AM=CN,求证:MFNE是平行四边形.

5、已知:如图DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC,求证:四边形ABCD是平行四边形.

6.在□ABCD中,点M、N在对角线AC上,且AM=CN,四边形BMDN是平行四边形吗?为什么?

7.如图,□ABCD中,E、F分别在BA、DC的延长线上,且AE=AB,CF=CD,AF和CE的关系如何?说明理由

.121

28.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

9、.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由

.10.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?

11、如图,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.12、如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?

14、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.

第五篇:怎么证明平行四边形

怎么证明平行四边形

在平行四边形ABCD中,AE,CF,分别是∠DAB、∠BCD的平分线,E、F点分别在DC、AB上,求证:四边形AFCE是平行四边形

证明:∵四边形ABCD为平行四边形;

∴DC‖AB;

∴∠EAF=∠DEA

∵AE,CF,分别是∠DAB、∠BCD的平分线;

∴∠DAE=∠EAF;∠ECF=∠BCF;

∴∠EAF=∠CFB;

∴AE‖CF;

∵EC‖AF

∴四边形AFCE是平行四边形

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形

1、两组对边分别平行的四边形是平行四边形

2、一组对边平行且相等的四边形是平行四边形

3、两组对边分别相等的四边形是平行四边形

4、对角线互相平分的四边形是平行四边形

21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形

下载利用平行四边形判断定理证明四边形为平行四边形讲义word格式文档
下载利用平行四边形判断定理证明四边形为平行四边形讲义.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    证明平行四边形

    证明(三)平行四边形导纲一、引入:平行四边形的定义:A平行四边形定义的应用:B⑴∵AB∥CD,AD∥BC∴四边形ABCD是⑵∵四边形ABCD是平行四边形 ∴二、自主探究:证明:平行四边形的对边相......

    32.2平行四边形的判定定理及其证明(范文)

    滦县三中九年级数学学科第一学期导学案课题: 32.2平行四边形的判定定理及其证明主备人:主审人:使用时间: 2013.11.25编号:五.学以致用:有一块平行四边形的玻璃片ABCD,不小心碰碎了......

    平行四边形的性质定理和判定定理及其证明

    4.1平行四边形的性质定理和判定定理及其证明姓名:成绩:1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是 A.AD∥BC, AD=BCB. AB=DC,AD=BC C.AB∥DC,AD......

    平行四边形判定定理教案

    18.1.2平行四边形的判定 (第一课时) 一、教学目标(一)知识教学点 1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用. 2.使学生理解判定定理与性质定理的区别与联......

    平行四边形证明练习

    数学练习题平行四边形证明练习姓名1.如图,在ABCD中,E,F为BD上的点,BF=DE,那么四边形AECF是什么图形?试用两种方法证明。2.在平行四边形ABCD中,BN=DM,BE=DF,求证:四边形MENF是平行四边形.......

    平行四边形证明提高

    5.已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.[例1]如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平......

    平行四边形练习证明

    1. 如图,在平行四边形ABCD中,AB70,求平行四边形各角的度数。BC2.如图,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求∠ADE,∠EDF,∠FDC的度数.3. 如图,在平行四边形ABCD中,已知对角线AC......

    证明三平行四边形

    证明三(平行四边形、梯形)知识点一:平行四边形平行四边形的性质:平行四边形的判定定理:①平行四边形的对边平行;①两组对边分别_________的四边形是平行四边形;②平行四边形的对边_......