第一篇:平行四边形证明典型题
平行四边形证明典型题
1.如下图,已知平行四边形ABCD,E为AD上的点,且AE=AB,BE和CD的延长线交于F,且∠BFC=40°,求平行四边形ABCD各内角的度数.2.已知平行四边形一组邻角的比是2∶3,求它的四个内角的度数.3.如下图所示,ABCD是平行四边形,以AD、BC为边在形外作等边三角形ADE和CBF,连结BD、EF,且它们相交于O,求证:EO=FO,DO=BO.4.已知:平行四边形ABCD中,AD=2AB,延长AB到F,使BF=AB,延长BA到E使AE=AB,求证:CE⊥DF
5.如图所示,已知平行四边形ABCD,直线FH与AB、CD相交,过A、B、C、D向FH作垂线,垂足为E、H、G、F,求证:AE-DF=CG-BH
6.平行四边形ABCD中,E为DC中点,延长BE与AD的延长线交于F,求证:E为BF中点,D为AF的中点.7.如图所示,平行四边形ABCD中,以BC、CD为边向内作等边三角形BCE和CDF.求证:△AEF为等边三角形.8.如图所示,在△ABC中,BD平分∠B,DE∥BC交AB于E,EF∥AC交BC于F,求证:BE=FC
9.如图所示,平行四边形ABCD中,E是AB的中点,F是CD中点,分别延长BA和DC到G、H,使AG=CH,连结GF、EH,求证:GF∥EH
10.如图所示,平行四边形ABCD中,E、F分别在AD、BC上,且AE=CF,AF与BE相交于G,CE与DF相交于H.求证:EF与GH互相平分
11.在四边形ABCD中,AB∥DC,对角线AC、BD交于O,EF过O交AB于E,交DC于F,且OE=OF,求证:四边形ABCD是平行四边形.12.如图所示,已知△ABC,分别以AB、BC、AC为边向BC同侧作等边三角形ABE、BCD、ACF.求证:DEAF为平行四边形.13.已知:如下图,在四边形ABCD中,AB=DC,AE⊥BD,CF⊥BD,垂足分别是E、F,AE=CF,求证:四边形ABCD是平行四边形.214.点O是平行四边形ABCD的对角线的交点,△AOB的面积为7cm,求平行四边形ABCD的面积.15.有两个村庄A和B位于一条河的两岸,假定河岸是两条平行的直线,现在要在河上架一座与河岸垂直的桥PQ,问桥应架在何处,才能使从A到B总的路程最短.【中考真题演练】
1.(河南省中考题)已知:如图,平行四边形ABCD中,对角线AC的平行线MN分别交DA、DC延长线于点M、N,交AB、BC于点P、Q.求证:MQ=NP.2.(黄冈市中考题)如图所示,平行四边形ABCD中,G、H是对角线BD上两点,且DG=BH,DF=BE.求证:四边形EHFG是平行四边形.3.(江西省中考题)已知:如图,平行四边形ABCD中,AE⊥BC,CF⊥BD,垂足分别为E、F,G、H分别是AD、BC的中点,GH交BD于点O.求证:GH与EF互相平分.
第二篇:证明平行四边形
证明
(三)平行四边形导纲
一、引入:
平行四边形的定义:
A
平行四边形定义的应用:B⑴∵AB∥CD,AD∥BC
∴四边形ABCD是⑵∵四边形ABCD是平行四边形 ∴
二、自主探究:
证明:平行四边形的对边相等,对角相等。已知: □ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB 证明:∵四边形ABCD是平行四边形
∴
D
AB
D
三、性质应用:.在□ABCD中,已知∠A =32。,求其余三个角的度数 解:∵四边形ABCD是平行四边形∴
D
2.已知在□ ABCD中AB=6cm,BC=4cm,求□ ABCD 的周长。解:∵四边形ABCD是平行四边形∴
3.连结AC,已知□ABCD的周长等于20 cm,AC=7 cm,求△ABC的周长。
C
B
A
四、小组合作探究:
证明:平行四边形的对角线互相平分
五.总结性质:
A D
D
B
C
六、巩固练习:
1.已知O是□ ABCD的对角线交点,AC=10cm,BD=18cm,AD=•12cm,则△BOC•的周长是_______
2.如图所示,平行四边形ABCD的对角线相交于O点,且AB≠BC,过O点作OE⊥AC,交BC于E,如果△ABE的周长为b,则平行四边形ABCD的周长是()。
A.b B.1.5bC.2bD.3b
AD
BEC
七、学以致用:
证明:夹在两条平行线间的平行线段相等。
八、巩固练习:
1、已知:如图平行四边形ABCD,E,F是直线BD上的两点,且∠E= ∠F。求证:AE=CFC2、已知:如图,□ABCD的对角线AC,BD相交于点O,过点O的直线与AD,BC分别相交
于点E,F.D 求证:OE=OF.B
F
九、自我检测:
1.在□ABCD中,∠A= 50 ,则∠°
2.如果□ABCD中,∠A+∠C=240°,则∠°
3.如果□ABCD的周长为28cm,且AB:BC=2∶5,那么,cm,cm,.
3、已知:如图,AC,BD是□ABCD的两条对角线,且AE⊥BD,CF⊥BD,垂足分别为E,F,求证:AE=CF.B
十、能力提高:
4、已知:在□ABCD中,点E,F在对角线AC上,且AF=CE.D
线段BE与DF之间有什么关系?请证明你的结论.A
若去掉题设中的AF=CE,请添加一个条件使BE与DF有以上同样的性质.B
第三篇:证明平行四边形
证明平行四边形
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。
求证:四边形ADFE是平行四边形。
设BC=a,则依题意可得:AB=2a,AC=√3a,等边△ABE,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a
∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴DF=√(AD²+AF²)=2a
∴AE=DF=2a,EF=AD=√3a=>四边形ADFE是平行四边形
1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形
1、两组对边分别平行的四边形是平行四边形
2、一组对边平行且相等的四边形是平行四边形
3、两组对边分别相等的四边形是平行四边形
4、对角线互相平分的四边形是平行四边形
21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。
性质9(8)矩形菱形是轴对称图形。(9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一种特殊的平行四边形。(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(11)平行四边形对角线把平行四边形面积分成四等分。(12)平行四边形是中心对称图形,但不是轴对称图形。(13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。编辑本段平行四边形中常用辅助线的添法
一、连接对角线或平移对角线。
二、过顶点作对边的垂线构成直角三角形。
三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。
四、连接顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。
五、过顶点作对角线的垂线,构成线段平行或三角形全等。编辑本段面积与周长
1、(1)平行四边形的面积公式:底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah(2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,@表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sin@
2、平行四边形周长可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)底×1X高
第四篇:平行四边形证明
1、已知:如图BD是平行四边形ABCD的对角线,E、F在BD上,且BE=DF.求证:四边形AECF是平行四边形.
2、已知:如图,ABCD中,AC是对角线,AE=CF,AM=CN.求证:MFNE是平行四边形
.3、已知:如图,四边形ACED是平行四边形,B是EC延长线上一点,且BC=CE,求证:四边形ABCD是平形四边形.
4、已知:如图,平形四边形ABCD中,AC是对角线,E,F是AC上的点,且AE=CF,点M、N在AB、CD上,且AM=CN,求证:MFNE是平行四边形.
5、已知:如图DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC,求证:四边形ABCD是平行四边形.
6.在□ABCD中,点M、N在对角线AC上,且AM=CN,四边形BMDN是平行四边形吗?为什么?
7.如图,□ABCD中,E、F分别在BA、DC的延长线上,且AE=AB,CF=CD,AF和CE的关系如何?说明理由
.121
28.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?
9、.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由
.10.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
11、如图,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.12、如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?
14、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.
第五篇:证明三平行四边形
证明三(平行四边形、梯形)
知识点一:平行四边形
平行四边形的性质:平行四边形的判定定理:
①平行四边形的对边平行;①两组对边分别_________的四边形是平行四边形;②平行四边形的对边__相等__;②两组对边分别_________的四边形是平行四边形;
③平行四边形的对角___相等_;③一组对边______且______的四边形是平行四边形;
推论:
①平行四边形的对角线___互相平分__①______________互相平分四边形是平行四边形;
②两组对角分别_________的四边形是平行四边形
推论:夹在两平行线间的平行线段_____
例1.□ABCD中,若∠A:∠B=2:3,则∠C=_______度,∠D=________度.
例2.下面给出的条件中,能判定一个四边形是平行四边形的是()。
A.一组邻角互补,一组对角相等。B.一组对边平行,一组邻角相等。
C.一组对边相等,一组对角相等。D.一组对边相等,一组邻角相等。
例3.如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.求证:四边形BEDF是平行四
边形.
练习
1.下列给出的四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定ABCD为平行四边形的是
()
A.1:2:3:4B.2:3:2:3C.2:2:3:3D.1;2;2;
32.若平行四边形的周长为28㎝,两邻边之比为4:3,则其中较长的边长为()
A.8㎝;B.10㎝;C.12㎝;D.16㎝。
3.下列给出的条件中,能判断四边形ABCD是平行四边形的是()
A.AB∥CD,AD = BCB.∠B = ∠C;∠A = ∠D
C.AB =AD,CB = CDD.AB = CD,AD = BC
4.如图,在□ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有().A.7B.8C.9 D.
15.已知:在□ABCD中,∠A的角平分线交CD于E,若DE:EC=3:1,AB的长为8,则ABCD的周长____________
6.平行四边形ABCD中,∠A+∠C=200°,则∠B=______
解答题
1.(2012•广东)已知如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.
求证:四边形ABCD是平行四边形.
2.如图,在平行四边形ABCD中,BF=DE.求证:四边形AFCE是平行四边形.
3.(佛山)已知在平行四边形ABCD中,EFGH分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH。
求证:AEH≌
CGF
4.四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形。
5.如图,在□BEDF中,点A、B是对角线EF所在直线上两点,且AE=CF.求证:四边形ABCD是平行四边形.
6.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:①OA=OC,②AB=CD,③∠BAD=∠DCB ④AD∥BC.请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
①构造一个真命题,画图并给出证明;②构造一个假命题,举反例加以说明.......
7.如图,在平行四边形内有一点E满足ED⊥AD于D,∠EBC=∠EDC,∠ECB=45º,请在图中找出
与BE相等的一条线段,并予以证明.
8.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.
二、等腰梯形
性质定理:
1、两腰相等
2、同一底上的两个角相等
3、对角线相等。
4、是轴对称图形(一条对称轴)
1.命题“等腰梯形的对角线相等”。它的逆命题是.2.如图,在等腰梯形ABCD中,AB∥CD,DC = 3 cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是()
A.21 cmB.18 cmC.15 cmD.12 cm
3.如图是用形状、大小完全相同的等腰梯形密铺成的图案的一部分,这个图案中∠1的度数是___________
4.已知等腰梯形ABCD,E为梯形内一点,且EA=ED.求证:EB=EC.
5.如图,在等腰梯形ABCD中,AD∥BC,AB=CD,对角线AC⊥BD,AD=6㎝,BC=12㎝,求梯形ABCD的面积。