平行四边形证明练习

时间:2019-05-13 08:38:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《平行四边形证明练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平行四边形证明练习》。

第一篇:平行四边形证明练习

数学练习题

平行四边形证明练习

姓名

1.如图,在ABCD中,E,F为BD上的点,BF=DE,那么四边形AECF是什么图形?试用两种方法证明。

2.在平行四边形ABCD中,BN=DM,BE=DF,求证:四边形MENF是平行四边形

.3.如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.4.如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.求证:OE=OF.5如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于F,试判断AF与CE是否相等,并说明理由

6.已知□ABCD中,对角线AC、BD交于O,EF过O与AB、CD分别交于E、F。求证: OE=OF,AE=CF,BE=DF

7.已知▱ABCD中,过对角线的交点O的直线交CB、AD的延长线于E和F,求证:

BE=DF

8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.

(1)求证:四边形AFCE是平行四边形.

(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗?若成立,请写出证明过程;

若不成立,请说明理由.

9.在□ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.

(1)试说明:AE⊥BF;

(2)判断线段DF与CE的大小关系,并予以说明.

10.在□ABCD中,AB=2AD,M为AB中点,求证:CM⊥DM

4CE.14.如图19-1-29,ABCD中,对角线AC、BD相交于点O,过点O作两条直线分别与AB,BC,CD,AD交于G,F,H,E四点。求证:四边形EGFH是平行四边形。中,AB=2AD,延长AD到F,使DF=AD,再延长DA到E,使AE=AD,求证:BF⊥E A D F B

15.如图19-1-30,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。

四、思维拓展

16.如图19-1-31,在ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F,点G,H分别为AD,BC的中点,试证明EF和GH互相平分。

17.如图19-1-32,△ABC是边长为4cm的边三角形,P是△ABC内的任意一点,过点P作EF∥AB分别交AC,BC于点E,F,作GH∥BC分别交AB,AC于点G,H,作MN∥AC分别交AB,BC于点M,N,试猜想:EF+GH+MN的值是多少?其值是否随P位置的改变而变化?并说明你的理由。

23.(1)如图19-1-13,ABCD的对角线AC,BD相交于点O、EF过点O,且,EF⊥AD,交AD于E,交BC于F,OE与OF相等吗?试说明理由;

(2)若(1)中的EF为过点O的任意一条直线,且AD于E,交BC于F,则上述关系还成立吗?试说明理由;

(3)如图19-1-14,若将(2)中的EF,向两端延长,分别交BA,DC的延长线于点M,N,则OM与ON相等吗?试说明理由;

(4)如图19-1-15,若把(1)中的已知条件为在ABCD中,AC,BD相交于点O,OE⊥AD于E,OF⊥BC于F,则(1)中的结论还成立吗?试说明理由。

第二篇:平行四边形练习证明

1.如图,在平行四边形ABCD中,AB70,求平行四边形各角的度数。

BC

2.如图,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求

∠ADE,∠

EDF,∠FDC的度数.

3.如图,在平行四边形ABCD中,已知对角线

AC和BD相交于点O,ΔAOB的周长为

15,AB=6,那么对角线AC和BD的和是多少?

4.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.

5.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.

6.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD上的两点,且AE=CF,AF,DE相交于点M,BF,CE相交于点N.

求证:四边形EMFN是平行四边形.(要求不用三角形全等来证)

7.已知:如图,在△

ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.

8.如图,已知,▱ABCD中,AE=CF,M、N分别是

DE、BF的中点.

求证:四边形MFNE是平行四边形.

9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.

已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.

(1)猜想:DF与AE间的关系是______.

(2)证明你的猜想.

第三篇:命题与证明平行四边形练习

典型例题剖析

1、将下列各句改写成“如果……,那么……”的形式.

(1)对顶角相等;

(2)等角的余角相等;

(3)垂直于同一条直线的两条直线互相平行;

(4)同旁内角互补,两直线平行;

分析:

省略掉词语的命题通常采取仔细分析,把省略掉的词语重新补上,或根据命题画出准确图形,再根据图形,把命题完整写出来,根据这些方法研究,我们便可着手改写了.

解:

(1)如果两个角是对顶角,那么这两个角相等;

(2)如果两个角是等角的余角,那么这两个角相等;

(3)如果两条直线都和第三条直线垂直,那么这两条直线互相平行;

(4)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;

2、指出下列命题的条件部分和结论部分

(1)直角都相等;

(2)互为邻补角的两个角的平分线互相垂直;

(3)直线外一点与直线上各点连结的所有线段中,垂线段最短;

(4)大于90°而小于180°的角是钝角;

(5)两个角的和等于平角时,这两个角互为补角.

分析:

解答这类问题,必须弄清命题由哪两部分组成,进一步弄明白条件与结论所表示的意思.便可找出条件与结论.对省略掉词语的命题应先设法补上,再着手找题设与结论.命题的条件与结论不好用文字叙述时,要用符号写出条件和结论,但必须说明符号所表示的意义.

解:(1)条件:两个角都是直角;

结论:这两个角相等.

(2)条件:互为邻补角的两个角的两条平分线;

结论:这两条角平分线互相垂直.

(3)条件:直线外一点与直线上各点连结的所有线段;

结论:垂线段最短.

(4)条件:90°<∠

结论:∠<180°; 是钝角.

(5)条件:两个角的和等于平角;

结论:这两个角互补.

3、判断下列命题的真假,如果是假命题,请说明理由.

(1)两点之间,线段最短.

(2)如果一个数的平方是9,那么这个数是3.

(3)同旁内角互补.

(4)过一点有且只有一条直线与已知直线平行.

(5)如果a+b=0,那么a=0,b=0.

(6)两个锐角的和是锐角.

分析:

要判定一个命题是假命题,只要举出一个例子(反例)即可.于是以上各题真假便眉目分明了. 解:

(1)真命题,这是关于线段的一个公理.

(2)假命题,因为一个数的平方是9,这个数也可能是-3.

(3)假命题,任意二条直线被第三条直线所截,都有同旁内角产生,只有两条平行线被第三直线所截,才有同旁内角互补的结论.

(4)假命题,如果这个点在已知直线上,就无法作出一条直线与已知直线平行.

(5)假命题,如果a=2,b=-2,2+(-2)=0,但a=2≠0,b=-2≠0.

(6)假命题,如60°和50°的角都是锐角,但它们的和是钝角.

4、区分下列语句中,哪些是定义,哪些是公理,哪些是定理:

(1)经过两点有一条直线,并且只有一条直线;

(2)两点之间,线段最短;

(3)有公共端点的两条射线组成的图形叫做角;

(4)对顶角相等;

(5)垂线段最短.

分析:

只要理解定义,公理,定理的意义,便可一一区分谁是定义,谁是公理,谁是定理.

解:(1)、(2)是公理;(3)是定义;(4)、(5)是定理.

5、完成以下证明,并在括号内填写理由:

已知:如图所示,∠1=∠2,∠A=∠3.求证:AC∥DE.例

6、如下图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E

.求证:

7、如图,CE是△ABC的外角∠ACM的平分线,CE交BA的延长线于点E,试说明∠BAC>∠B成立的理由

.例

8、已知:如图AD为∠ABC的角平分线 E为BC的中点过E作EF∥ AD,交AB于M,交CA延长线于F。CN∥ AB交FE的延长线于N。

求证:

BM=CF

9、求证:没有一个有理数的平方等于

3例

10、求证:三角形的三条边的垂直平分线交于一点

11、求证:等腰三角形的底角是锐角

第四篇:证明平行四边形

证明平行四边形

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。

求证:四边形ADFE是平行四边形。

设BC=a,则依题意可得:AB=2a,AC=√3a,等边△ABE,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a

∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴DF=√(AD²+AF²)=2a

∴AE=DF=2a,EF=AD=√3a=>四边形ADFE是平行四边形

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形

1、两组对边分别平行的四边形是平行四边形

2、一组对边平行且相等的四边形是平行四边形

3、两组对边分别相等的四边形是平行四边形

4、对角线互相平分的四边形是平行四边形

21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。

性质9(8)矩形菱形是轴对称图形。(9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一种特殊的平行四边形。(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(11)平行四边形对角线把平行四边形面积分成四等分。(12)平行四边形是中心对称图形,但不是轴对称图形。(13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。编辑本段平行四边形中常用辅助线的添法

一、连接对角线或平移对角线。

二、过顶点作对边的垂线构成直角三角形。

三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。

四、连接顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。

五、过顶点作对角线的垂线,构成线段平行或三角形全等。编辑本段面积与周长

1、(1)平行四边形的面积公式:底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah(2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,@表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sin@

2、平行四边形周长可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)底×1X高

第五篇:平行四边形证明

1、已知:如图BD是平行四边形ABCD的对角线,E、F在BD上,且BE=DF.求证:四边形AECF是平行四边形.

2、已知:如图,ABCD中,AC是对角线,AE=CF,AM=CN.求证:MFNE是平行四边形

.3、已知:如图,四边形ACED是平行四边形,B是EC延长线上一点,且BC=CE,求证:四边形ABCD是平形四边形.

4、已知:如图,平形四边形ABCD中,AC是对角线,E,F是AC上的点,且AE=CF,点M、N在AB、CD上,且AM=CN,求证:MFNE是平行四边形.

5、已知:如图DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC,求证:四边形ABCD是平行四边形.

6.在□ABCD中,点M、N在对角线AC上,且AM=CN,四边形BMDN是平行四边形吗?为什么?

7.如图,□ABCD中,E、F分别在BA、DC的延长线上,且AE=AB,CF=CD,AF和CE的关系如何?说明理由

.121

28.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

9、.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由

.10.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?

11、如图,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.12、如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?

14、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.

下载平行四边形证明练习word格式文档
下载平行四边形证明练习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    怎么证明平行四边形

    怎么证明平行四边形在平行四边形ABCD中,AE,CF,分别是∠DAB、∠BCD的平分线,E、F点分别在DC、AB上,求证:四边形AFCE是平行四边形证明:∵四边形ABCD为平行四边形;∴DC‖AB;∴∠EAF=∠......

    证明平行四边形

    证明(三)平行四边形导纲一、引入:平行四边形的定义:A平行四边形定义的应用:B⑴∵AB∥CD,AD∥BC∴四边形ABCD是⑵∵四边形ABCD是平行四边形 ∴二、自主探究:证明:平行四边形的对边相......

    平行四边形证明题练习

    平行四边形证明题练习1、如图1,四边形ABCD的对角线AC、BD相交于点O,DE⊥AC,BF⊥AC,DE=BF,且∠ADB=∠DBC.求证:四边形ABCD是平行四边形.2、如图2,E、F、G、H分别是AB、BC、CD、DA的......

    平行四边形证明提高

    5.已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.[例1]如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平......

    证明三平行四边形

    证明三(平行四边形、梯形)知识点一:平行四边形平行四边形的性质:平行四边形的判定定理:①平行四边形的对边平行;①两组对边分别_________的四边形是平行四边形;②平行四边形的对边_......

    平行四边形的证明

    一,教学衔接(一).检查作业(二).平行四边形①定义②性质③判定定理二,教学内容1、课本给的判定定理之外的证明方法:(证明方法详情PPT)一组对边平行一组对角相等的四边形是平行四边形两......

    有关平行四边形的证明

    有关平行四边形的证明题型一:证明平行四边形例一、已知:如图,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO. 求证:四边形ABCD是平行四边形.例二、如图,在△ABC中,D、E、F分别为边AB、B......

    平行四边形证明训练

    有关平行四边形证明训练1、如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE. 求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.2、如图所示,已知在平行四边形ABCD中,BE=DF求证:AE=C......