第一篇:平行四边形证明题练习
平行四边形证明题练习
1、如图1,四边形ABCD的对角线AC、BD相交于点O,DE⊥AC,BF⊥AC,DE=BF,且∠ADB=∠DBC.求证:四边形ABCD是平行四边形.2、如图2,E、F、G、H
分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.HD
CFB3、如图,□ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O,求证EO=FO.4、如图,在□ABCD中,点E是AD的中点,BE的延长线与CD的延长线交于点F.(1)求证:△ABE≌△DFE;
(2)试连接BD,AF,判断四边形ABDF的形状,并证明你的结论.5、已知□ABCD中,AE⊥BD于E,CF⊥BD于F,四边形AECF是平行四边形吗?试说明理由.BC
第二篇:平行四边形证明题中考练习
24.(10分)如图(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90,AB与CE交于F,ED与AB、BC分别交于M、H.(1)求证:CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45时,试判断四边形ACDM是什么四边形?并证明你的结论.
MEH
E F
D
A
C 图(1)
A
C 图(2)
D
24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM直线a于点M,CN直线a于点N,连接PM、PN;(1)延长MP交CN于点E(如图2)。 求证:△BPM△CPE; 求证:PM = PN;
(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时
PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由。
C C
圖1 圖
2四、【安徽省】
20.如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC。⑴求证:四边形BCEF是菱形
⑵若AB=BC=CD,求证:△ACF≌△BDE
23.(本题7分)
a
a
a
C
圖
3如图,四形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点。(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明
你的结论。D
O
B
G
18.如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE.已知
∠BAC=30°,EF⊥AB,垂足为F,连结DF. ⑴试说明AC=EF;
A ⑵求证:四边形ADFE是平行四边形. E
F
B
C
第18题图
26.如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕D旋转到如图11的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方形GFED绕D旋转到如图12的位置时,延长CE交AG于H,交AD于M.①求证:AG⊥CH;
②当AD=4,DG
CH的长。
22.(本题满分8分)
E
D
AG
D
A
HFC
D
EC
图110
B图1
1C
B
C
图1
2F分别在线段BC、AB上,如图6,已知△ABC是等边三角形,点D、∠EFB60°,DCEF.(1)求证:四边形EFCD是平行四边形;
E
A
B
D 图6
C
(2)若BFEF,求证AEAD.24.(9分)已知:如图,在梯形ABCD中,AD∥BC,∠DCB = 90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为k,若AD︰BC = 2︰3.请探究:当k为下列三种情况时,四
边形ABPE是什么四边形?①当k= 1时,是;②当k= 2时,是;③当k= 3时,是.并证明...k= 2时的结论.21.(本题满分9分)
如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.
24.(10分)如图,四边形ABCD是边长为2的正方形,点G
是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.24题图24.如图9,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴 的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分 线AC交于点P.E
D
0)时,试证明CEEP;(1)当点E坐标为(3,(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t0)”,结论
CEEP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.图9 27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD
∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.
(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30º.
求
DF
FC的值.
图1
C
D
图2
C
第三篇:平行四边形证明题
1如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC.求证:四边形ADCE是平行四边形.
2、如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE、BD,求证:四边形ABDE是平行四边形.
3、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.
4、如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.
5如图,已知□ABCD的对角线AC,BD相交于点O,直线EF经过点O,且分别交AB,CD于点E,F.求证:四边形BFDE是平行四边形..
6、如图,平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别是E、F.求证:△ABE≌△CDF.
7、已知ABCD是平行四边形,用尺规分别作出△BAC与△DAC共公边AC上的高BE、DF.求证:BE=DF.
8、如图,在▱ABCD中,点E是DC的中点,连接AE,并延长交BC的延长线于点F.
(1)求证:△ADE和△CEF的面积相等
(2)若AB=2AD,试说明AF恰好是∠BAD的平分线
9、如图,在平行四边形ABCD中,点E、F是对角线AC上两点,且AE=CF.试说明:∠EBF=∠FDE.
10如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()
11、已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF.
12、如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.
13、如图,点B、C、E是同一直线上的三点,四边形ABCD与四边形CEFG都是正方形,连接BG、DE.求证:BG=DE;
14、已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足. 求证:AP=EF.
15、如图,AC是菱形ABCD的对角线,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.
15、如图,四边形ABCD是矩形,直线L垂直分线段AC,垂足为O,直线L分别于线段AD,CB的延长线交于点E,F,证明四边形AFCE是菱形.
16、如图,E、F是四边形ABCD的对角线AC上两点,AE=CF,DF∥BE,DF=BE.(1)求证:四边形ABCD是平行四边形;(2)若AC平分∠BAD,求证:▱ABCD为菱形.
17、如图所示,在菱形ABCD中,∠BAD=120°,AB=4. 求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.
18、如图,四边形ABCD是矩形,点E是边AD的中点.求证:EB=EC.
19、如图,矩形ABCD的对角线AC、BD交于点O,∠AOB=60°,AB=3,求BD的长.
20、在矩形ABCD中,已知AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,求CE的长.
21、已知:矩形ABCD中,对角线AC与BD交于点O,∠BOC=120°,AC=4cm,求矩形ABCD的周长.
第四篇:平行四边形证明题
平行四边形证明题
由条件可知,这是通过三角形的中位线定理来判断FG平行DA,同理HE平行DA,GE平行CB,FH平行CB!~
我这一化解,楼主应该明白了吧!~
希望楼主采纳,谢谢~!不懂再问!!
此题关键就是对于三角形的中位线定理熟不!~!~·
已知:F,G是△CDA的中点,所以FG是△CDA的中位线,所以FG平行DA
同理HE是△BAD的中位线,所以HE平行DA,所以FG平行HE
同理可得:FH平行GE!~
即四边形FGEH是平行四边形(两组对边分别平行的四边形是平行四边形
2证明:∵E,F,G,H分别是AB,CD,AC,BD的中点
∴FG//AD,HE//AD,FH//BC,EG//BC
∴FG//HE,FH//EG
∴四边形EGFH是平行四边形
3.理由:连接一条对角线,AC吧。
∵AD平行BC,AB平行DC(平行四边形的性质)
∴∠DAC=∠ACB,∠BAC=∠DCA
在△ABC和△DAC中,∠DAC=∠ACB
AC=CA
∠BAC=∠DCA
所以,△ABC全等于△DAC(A.S.A)
所以,AB=DA,AD=BC
证明:∵四边形ABCD为平行四边形;
∴DC‖AB;
∴∠EAF=∠DEA
∵AE,CF,分别是∠DAB、∠BCD的平分线;
∴∠DAE=∠EAF;∠ECF=∠BCF;
∴∠EAF=∠CFB;
∴AE‖CF;
∵EC‖AF
∴四边形AFCE是平行四边形
41.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。
性质9(8)矩形菱形是轴对称图形。(9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一种特殊的平行四边形。(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(11)平行四边形对角线把平行四边形面积分成四等分。(12)平行四边形是中心对称图形,但不是轴对称图形。(13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。编辑本段平行四边形中常用辅助线的添法
一、连接对角线或平移对角线。
二、过顶点作对边的垂线构成直角三角形。
第五篇:平行四边形、矩形、菱形、正方形练习证明题
1、已知如图,在□ABCD中,E、F分别是边BC和AD上的点,且BE=DF。求证:AE=CF
2如图,在□ABCD中,∠ADC的平分线与AB相交于点E,求证:BE+BC=CD
3、如图,在△ABC中,AB=AC,点D是BC的中点,过点A、D分别作BC于AB的平行线,并交于点E,连接EC、AD,求证四边形ADCE是矩形。
4、如图,在△ABC中,AB=AC,AD ⊥BC,垂足为点D,AG是 △ABC的外角 ∠FAC 的平分线,DE ‖AB , 交AG于点E,求证:四边形ADCE是矩形.
5、如图,已知菱形ABCD的边长为2cm,∠BAD=120°,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长.
6、如图,G、H是□ABCD对角线AC上的两点,且AG=CH,E、F分别是边AB和CD的中点,求证:四边形EHFG 是平行四边形。
7、如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H,EK和GH相交于点F。求证:GE与FD互相垂直平分。
8、如图,在△ABC中,∠C=90°,∠CAB、∠CBA的平分线相交于点D,DE⊥BC于点E,DF⊥AC于点F,求证:
(1)四边形CFDE是矩形。(2)四边形CFDE是正方形。