初二数学平行四边形压轴:几何证明题(推荐5篇)

时间:2019-05-13 08:38:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初二数学平行四边形压轴:几何证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初二数学平行四边形压轴:几何证明题》。

第一篇:初二数学平行四边形压轴:几何证明题

初二数学平行四边形压轴:几何证明题

1.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.

C(1)请判断四边形EFGH的形状,并给予证明; D(2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。

F

B

2.如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.

(1)线段A1C1的长度是,∠CBA1的度数是.

(2)连接CC1,求证:四边形CBA1C1是平行四边形. A1 C

3.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;

(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形. P D

4.已知:如图,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.⑴求证:BEDG;

⑵若∠B60,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.E

F

5.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.

求证:(1)FC=AD; D(2)AB=BC+AD.

E

F C

6.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.

(1)求证:△ABE≌△ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. B

A

D B C

7.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F.F(1)求证:△ABE≌△DFE

(2)连结BD、AF,判断四边形ABDF的形状,并说明理由.ED

B C

8.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求证:AE=DF;

(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

F

B

D

9.如图,在平行四边形中,点E,F是对角线BD上两点,且BFDE.

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对全等三角形进行证明.

10.在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为点E,并延长DE至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;

(2)若DEBECE,求证:四边形ABFC是矩形.D

B

11.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE.B(1)求证:DA⊥AE

(2)试判断AB与DE是否相等?并说明理由。

E

C

12.如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.(1)当点D在BC上运动时,∠EDF的大小(变大、变小、不变)

(2)当AB=10时,四边形EDF的周长是多少? A(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明.EF

B C

2A

13.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断△ABC的形状,并什么理由.D

B

14.如图,在平行四边形ABCD中,E为BC的中点,连结AE并延长交DC的延长线于点F.(1)求证:AB=CF D

(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形?并说明.C

B F

15.如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于点F.(1)求证:△BCG≌△DCE

(2)将△DEC绕点D顺时针旋转90°得到△DMA,判断四边形MBGD是什么特殊四边形?并说明理由.16.将平行四边形纸片ABCD如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.(1)求证:△ABE≌△AD’F D’(2)连结CF,判断四边形AECF是什么特殊四边形,说明理由.D

B

17.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.(1)求证:四边形ADCE是矩形;

(2)当△ABC满足什么条件时,四边形ADCE是正方形?说明理由.A

18.四边形ABCD、DEFG都是正方形,连结AE、CG.(1)求证:AE=CG; B(2)猜想AE与CG的位置关系,并证明.F

BC

19.如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究四边形BECF是什么特殊四边形,并说明理由;

(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.F D

C20.如图,在□ABCD中,AB⊥AC,AB=1,BC=5,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;

(2)试探究在旋转过程中,线段AF与EC有怎样的数量关系,并证明;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.F D

21.如图,B、C、E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连结BG、DE.(1)猜想BG与DE之间的大小关系,并证明你的结论;

(2)在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说明旋转过程;若不存在,请说明理由.A

B 22.如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD

F

(1)求证:△BOC≌△DOF;(2)当EF与AC满足什么关系时,四边形AECF是菱形?并说明.D

C

23.如图,△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和

F CF.(1)请在图中找出一对全等三角形,并加以证明;

(2)判断四边形ABDF的形状,并说明理由.B

24.如图,△ABC是等边三角形,点D是线段BC上的动点(点D不与B、C重合),△ADE是以AD为边的等边三角形,过E作BC的平行线,分别交AB、AC于点F、G,连结BE.A(1)求证:△AEB≌△ADC;

(2)四边形BCGE是怎样的四边形?说明理由.

第二篇:初二数学特殊平行四边形压轴:几何证明题1

初二数学平行四边形压轴:几何证明题

1.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.

(1)请判断四边形EFGH的形状,并给予证明;(2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。

2.如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.

(1)线段A1C1的长度是,∠CBA1的度数是.

(2)连接CC1,求证:四边形CBA1C1是平行四边形.

C B

3.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;

(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.

4.已知:如图,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.⑴求证:BEDG;

⑵若∠B60,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.C F B A1 P E

5.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交 BC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

B F C D E

C

6.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.(1)求证:△ABE≌△

ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.B

A

7.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F.(1)求证:△ABE≌△DFE

(2)连结BD、AF,判断四边形ABDF的形状,并说明理由.ED

B C

8.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求证:AE=DF;

(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

F

C B

D

9.如图,在平行四边形中,点E,F是对角线BD上两点,且BFDE.

(1)写出图中每一对你认为全等的三角形;

(2)选择(1)中的任意一对全等三角形进行证明.

10.在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为点E,并延长DE至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;

(2)若DEBECE,求证:四边形ABFC是矩形.2D B

11.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE.(1)求证:DA⊥AE

(2)试判断AB与DE是否相等?并说明理由。

CB E

12.如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.(1)当点D在BC上运动时,∠EDF的大小(变大、变小、不变)

(2)当AB=10时,四边形EDF的周长是多少? A(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明.E

BF C

第三篇:初二几何证明题

1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论

A

E

B

第四篇:初二数学几何证明题

1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。

2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。

3.。如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。

4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。

5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC且与AB的延长线交与点E,求证四边形AECD是等腰梯形?

6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。

1.求证四边形ABCD是菱形。

2.若∠AED=2∠EAD,求证四边形ABCD是正方形。

7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。求证:EF=BE+DF

第五篇:初二数学证明题压轴题集合

初二数学练习题

1.在矩形ABCD中,AB=6,BC=8。将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处。①求EF的长;②求梯形ABCE的面积。

2.如图,E是正方形的边AD上的动点,F是边BC延长线的一点,BF=EF,AB=12,设AE=x, BF=y.(1)求证:F2ABE;

(2)求出y和x之间的函数解析式,以及自便量的定义域;

(3)把ABE沿着直线BE翻折,点A落在A’处,试探求A,BF能否为等腰三角形?如果能,求出AE的长,如果不能,请说明理由.1F

3.在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边AC上的一个动点,且PB=PD,DE⊥AC,垂足为E。(1)求证:PE=BO

(2)设AC=2a,AP=x,四边形PBDE的面积为y,求y与x之间的函数关系式,并写出定义域。

4. 已知:在RtABC中,C90,AC=BC,M是AC的中点,联结BM,CF⊥MB,F是垂足,延长CF交AB于点E.求证:

AME

C

.A

E

M

F

CB

5.如图,直线ykxb与反比例函数y

kx

'

(x<0)的图象相交于点A、点B,与x轴交于

点C,其中点A的坐标为(-2,4),点B的横坐标为-4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.6.已知:如图,点D是△ABC的边AC上的一点,过点D作DE⊥AB,DF⊥BC,E、F为垂足,再过点D作 DG∥AB,交BC于点G,且DE=DF.(1)求证:DG=BG;(2)求证:BD垂直平分EF.

D

G

F C

7.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y的图像上,已知正方形OAPB的面积为9.

(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.

8.如图,△OAB是边长为2的等边三角形,过点A的直线y(1)求点E的坐标;(2)求 直线AE的解析式;

(3)若点P(p,q)是线段AE上一动点(不与A、E重合),设△APB的面积为S,求:S关于p的函数关系式及定义域;(4)若点P(p,q)是线段AE上一动点(不与A、E重合),且△APB是直角三角形,求:点P的坐标。

kx

xm与x轴交于点E。

下载初二数学平行四边形压轴:几何证明题(推荐5篇)word格式文档
下载初二数学平行四边形压轴:几何证明题(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初二几何证明题5篇

    初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜......

    初二几何证明题(5篇范文)

    28.(本小题满分10分)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平......

    初二期末几何证明题复习(本站推荐)

    初二期末几何证明题复习2014-6-121.在△ABC 中, AB  AC ,A 0,将线段 BC 绕点 B 逆时针旋转 60得到线段 BD ,再将线段BD平移到EF,使点E在AB上,点F在AC上. (1)如图 1,直接写出 ABD和CFE......

    初中数学几何证明题

    初中数学几何证明题分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。......

    中考数学几何证明题

    中考数学几何证明题在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.在图1中证明CE=CF;若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;第一个问我会,求第二......

    初中数学几何证明题

    平面几何大题 几何是丰富的变换 多边形平面几何有两种基本入手方式:从边入手、从角入手 注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方......

    中考数学经典几何证明题

    2011年中考数学经典几何证明题(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;(2)如图2,在......

    初一数学几何证明题

    初一数学几何证明题一般认为,要提升数学能力就是要多做,培养兴趣。事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。所以数学不好,问题不在自信,而是要......