重庆中考(往届)数学24题专题练习
1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE
(1)求证:BE=CE;
(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.
在BG上取BH=AB=CD,连EH,显然△ABE与△CDE全等,则∠ABE=∠DCE,∠AEB=∠DEC
又∠BEC=90°=∠BFC,对顶角∠BGE=∠CGF,故∠FBE=∠DCE,所以∠ABE=∠FBE
在BF上取BH=AB,连接EH,由BH=AB,∠ABE=∠FBE,BE=BE,故△ABE与△HBE全等
故∠AEB=∠HEB,AE=EH
而∠AEB+∠DEC+∠BEC=180°,∠AEB=∠DEC,∠BEC=90°
所以∠AEB=∠DEC=45°=∠HEB
故∠AEH=∠AEB+∠HEB=90°=∠HED
同理,∠DEG=45°=∠HEG
EH=AE=ED,EG=EG
故△HEG与△FEG全等,所以HG=DG
即BG=BH+HG=AB+DG=DG+CD2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.
(1)若HE=HG,求证:△EBH≌△GFC;
(2)若CD=4,BH=1,求AD的长.
3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.
(1)当CE=1时,求△BCE的面积;
(2)求证:BD=EF+CE.
4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E
EF∥CA,交CD于点F,连接OF.
(1)求证:OF∥BC;
(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.
5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.
(1)求线段CD的长;
(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.
6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.
(1)若AB=6cm,求梯形ABCD的面积;
(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.
7、已知:如图,ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.
(1)求证:AE=ED;
(2)若AB=BC,求∠CAF的度数.
8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.
(1)求证:∠DAE=∠DCE;
(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.
9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.
10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;
(1)证明:EF=EA;
(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.
11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.
12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
(1)求证:AE=GF;
(2)设AE=1,求四边形DEGF的面积.
13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.
14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.
15、如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:AD=AE;
(2)若AD=8,DC=4,求AB的长.
16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;
(2)若AD=4,BC=14,求EF的长.
17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.
(1)求证:CD=BE;
(2)若AD=3,DC=4,求AE.
18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.
19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.
(1)求证:BF=EF﹣ED;
(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.
20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.
(1)若EF⊥AF,AF=4,AB=6,求
AE的长.
(2)若点F是CD的中点,求证:CE=BE﹣AD.
21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.
(1)求证:DH=(AD+BC);
(2)若AC=6,求梯形ABCD的面积.
22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.
(1)求证:△AGE≌△DAB;
(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.
23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.
(1)试说明梯形ABCD是等腰梯形;
(2)若AD=1,BC=3,DC=,试判断△DCF的形状;
(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.
24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.
(1)证明:△ABE≌△DAF;
(2)求∠BPF的度数.
25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.
(1)求∠ABC的度数;
(2)如果BC=8,求△DBF的面积?
26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.
(1)求证:△AGD为正三角形;
(2)求EF的长度.
27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.
(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.
(2)求证:ED=BE+FC.
28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.
(1)求证:△BCE≌△AFE;
(2)若AB⊥BC且BC=4,AB=6,求EF的长.
29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:
(1)△BFC≌△DFC;
(2)AD=DE;
(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.
30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.
(1)求证:四边形ABED是菱形;
(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.
参考答案
1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE
(1)求证:BE=CE;
(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.
证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,∴AB=DC,∠BAE=∠CDE,AE=DE,∴△BAE≌△CDE,∴BE=CE;
(2)延长CD和BE的延长线交于H,∵BF⊥CD,∠HEC=90°,∴∠EBF+∠H=∠ECH+∠H=90°
∴∠EBF=∠ECH,又∠BEC=∠CEH=90°,BE=CE(已证),∴△BEG≌△CEH,∴EG=EH,BG=CH=DH+CD,∵△BAE≌△CDE(已证),∴∠AEB=∠GED,∠HED=∠AEB,∴∠GED=∠HED,又EG=EH(已证),ED=ED,∴△GED≌△HED,∴DG=DH,∴BG=DG+CD.
2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.
(1)若HE=HG,求证:△EBH≌△GFC;
(2)若CD=4,BH=1,求AD的长.
(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.
∴△EBH≌△GFC;
(2)解:∵ED平分∠AEF,∠A=∠DFE=90°,∴AD=DF,∵DF=DC﹣FC,∵△EBH≌△GFC,∴FC=BH=1,∴AD=4﹣1=3.
3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.
(1)当CE=1时,求△BCE的面积;
(2)求证:BD=EF+CE.
(2)过E点作EM⊥DB于点M,四边形FDME是矩形,FE=DM,∠BME=∠BCE=90°,∠BEC=∠MBE=60°,△BME≌△ECB,BM=CE,继而可证明BD=DM+BM=EF+CE.
(1)解:∵AD=CD,∴∠DAC=∠DCA,∵DC∥AB,∴∠DCA=∠CAB,∴,∵DC∥AB,AD=BC,∴∠DAB=∠CBA=60°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°,∴∠BCE=180°﹣∠ACB=90°,∵BE⊥AB,∴∠ABE=90°,∴∠CBE=∠ABE﹣∠ABC=30°,在Rt△BCE中,BE=2CE=2,∴…(5分)
(2)证明:过E点作EM⊥DB于点M,∴四边形FDME是矩形,∴FE=DM,∵∠BME=∠BCE=90°,∠BEC=∠MBE=60°,∴△BME≌△ECB,∴BM=CE,∴BD=DM+BM=EF+CE…(10分)
4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E作EF∥CA,交CD于点F,连接OF.
(1)求证:OF∥BC;
(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.
解答:(1)证明:延长EF交AD于G(如图),在平行四边形ABCD中,AD∥BC,AD=BC,∵EF∥CA,EG∥CA,∴四边形ACEG是平行四边形,∴AG=CE,又∵,AD=BC,∴,∵AD∥BC,∴∠ADC=∠ECF,在△CEF和△DGF中,∵∠CFE=∠DFG,∠ADC=∠ECF,CE=DG,∴△CEF≌△DGF(AAS),∴CF=DF,∵四边形ABCD是平行四边形,∴OB=OD,∴OF∥BE.
(2)解:如果梯形OBEF是等腰梯形,那么四边形ABCD是矩形.
证明:∵OF∥CE,EF∥CO,∴四边形OCEF是平行四边形,∴EF=OC,又∵梯形OBEF是等腰梯形,∴BO=EF,∴OB=OC,∵四边形ABCD是平行四边形,∴AC=2OC,BD=2BO.
∴AC=BD,∴平行四边形ABCD是矩形.
5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.
(1)求线段CD的长;
(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.
(1)解:连接BD,由∠ABC=90°,AD∥BC得∠GAD=90°,又∵BF⊥CD,∴∠DFE=90°
又∵DG=DE,∠GDA=∠EDF,∴△GAD≌△EFD,∴DA=DF,又∵BD=BD,∴Rt△BAD≌Rt△BFD(HL),∴BF=BA=,∠ADB=∠BDF
又∵CF=6,∴BC=,又∵AD∥BC,∴∠ADB=∠CBD,∴∠BDF=∠CBD,∴CD=CB=8.
(2)证明:∵AD∥BC,∴∠E=∠CBF,∵∠HDF=∠E,∴∠HDF=∠CBF,由(1)得,∠ADB=∠CBD,∴∠HDB=∠HBD,∴HD=HB,由(1)得CD=CB,∴△CDH≌△CBH,∴∠DCH=∠BCH,∴∠BCH=∠BCD==.
6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.
(1)若AB=6cm,求梯形ABCD的面积;
(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.
解:(1)连AC,过C作CM⊥AD于M,如图,在Rt△ABC中,AB=6,sin∠ACB==,∴AC=10,∴BC=8,在Rt△CDM中,∠D=45°,∴DM=CM=AB=6,∴AD=6+8=14,∴梯形ABCD的面积=•(8+14)•6=66(cm2);
(2)证明:过G作GN⊥AD,如图,∵∠D=45°,∴△DNG为等腰直角三角形,∴DN=GN,又∵AD∥BC,∴∠BFH=∠FHN,而∠EFH=∠FHG,∴∠BFE=∠GHN,∵EF=GH,∴Rt△BEF≌Rt△NGH,∴BE=GN,BF=HN,∴DA=AN+DN=AN+DG=BF+BE.
7、已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.
(1)求证:AE=ED;
(2)若AB=BC,求∠CAF的度数.
(1)证明:如图.
∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.
∵DF=CD,∴AB∥DF.
∵DF=CD,∴AB=DF.
∴四边形ABDF是平行四边形,∴AE=DE.
(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.
∴AC⊥BD.
∴∠COD=90°.
∵四边形ABDF是平行四边形,∴AF∥BD.
∴∠CAF=∠COD=90°.
8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.
(1)求证:∠DAE=∠DCE;
(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.
(1)证明:在△DAE和△DCE中,∠ADE=∠CDE(正方形的对角线平分对角),ED=DE(公共边),AE=CE(正方形的四条边长相等),∴△DAE≌△DCE
(SAS),∴∠DAE=∠DCE(全等三角形的对应角相等);
(2)解:如图,由(1)知,△DAE≌△DCE,∴AE=EC,∴∠EAC=∠ECA(等边对等角);
又∵CG=CE(已知),∴∠G=∠CEG(等边对等角);
而∠CEG=2∠EAC(外角定理),∠ECB=2∠CEG(外角定理),∴4∠EAC﹣∠ECA=∠ACB=45°,∴∠G=∠CEG=30°;
过点C作CH⊥AG于点H,∴∠FCH=30°,∴在直角△ECH中,EH=CH,EG=2CH,在直角△FCH中,CH=CF,∴EG=2×CF=3CF.
9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.
(1)证明:连接PC.
∵ABCD是正方形,∴∠ABE=∠ADF=90°,AB=AD.
∵BE=DF,∴△ABE≌△ADF.(SAS)
∴∠BAE=∠DAF,AE=AF.
∴∠EAF=∠BAD=90°.
∵P是EF的中点,∴PA=EF,PC=EF,∴PA=PC.
又
AD=CD,PD公共,∴△PAD≌△PCD,(SSS)
∴∠ADP=∠CDP,即DP平分∠ADC;
(2)作PH⊥CF于H点.
∵P是EF的中点,∴PH=EC.
设EC=x.
由(1)知△EAF是等腰直角三角形,∴∠AEF=45°,∴∠FEC=180°﹣45°﹣75°=60°,∴EF=2x,FC=x,BE=2﹣x.
在Rt△ABE中,22+(2﹣x)2=(x)2解得
x1=﹣2﹣2(舍去),x2=﹣2+2.
∴PH=﹣1+,FD=(﹣2+2)﹣2=﹣2+4.
∴S△DPF=(﹣2+4)×=3﹣5.
10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;
(1)证明:EF=EA;
(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.
(1)证明:
∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.
∵E为CD的中点,∴ED=EC.
∴△ADE≌△FCE.
∴EF=EA.(5分)
(2)解:连接GA,∵AD∥BC,∠ABC=90°,∴∠DAB=90°.
∵DG⊥BC,∴四边形ABGD是矩形.
∴BG=AD,GA=BD.
∵BD=BC,∴GA=BC.
由(1)得△ADE≌△FCE,∴AD=FC.
∴GF=GC+FC=GC+AD=GC+BG=BC=GA.
∵由(1)得EF=EA,∴EG⊥AF.(5分)
11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.
(1)证明:∵△ADF为等边三角形,∴AF=AD,∠FAD=60°(1分)
∵∠DAB=90°,∠EAD=15°,AD=AB(2分)
∴∠FAE=∠BAE=75°,AB=AF,(3分)
∵AE为公共边
∴△FAE≌△BAE(4分)
∴EF=EB(5分)
(2)解:如图,连接EC.(6分)
∵在等边三角形△ADF中,∴FD=FA,∵∠EAD=∠EDA=15°,∴ED=EA,∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°.(7分)
由(1)△FAE≌△BAE知∠EBA=∠EFA=30°.
∵∠FAE=∠BAE=75°,∴∠BEA=∠BAE=∠FEA=75°,∴BE=BA=6.
∵∠FEA+∠BEA+∠GEB=180°,∴∠GEB=30°,∵∠ABC=60°,∴∠GBE=30°
∴GE=GB.(8分)
∵点G是BC的中点,∴EG=CG
∵∠CGE=∠GEB+∠GBE=60°,∴△CEG为等边三角形,∴∠CEG=60°,∴∠CEB=∠CEG+∠GEB=90°(9分)
∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2
∴CE=,∴BC=(10分);
解法二:过C作CQ⊥AB于Q,∵CQ=AB=AD=6,∵∠ABC=60°,∴BC=6÷=4.
12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
(1)求证:AE=GF;
(2)设AE=1,求四边形DEGF的面积.
(1)证明:∵AB=DC,∴梯形ABCD为等腰梯形.
∵∠C=60°,∴∠BAD=∠ADC=120°,又∵AB=AD,∴∠ABD=∠ADB=30°.
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.(1分)
由已知AE⊥BD,∴AE∥DC.(2分)
又∵AE为等腰三角形ABD的高,∴E是BD的中点,∵F是DC的中点,∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.(3分)
∴AE=DF(4分)
∵F是DC的中点,DG是梯形ABCD的高,∴GF=DF,(5分)
∴AE=GF.(6分)
(2)解:在Rt△AED中,∠ADB=30°,∵AE=1,∴AD=2.
在Rt△DGC中∠C=60°,并且DC=AD=2,∴DG=.(8分)
由(1)知:在平行四边形AEFD中EF=AD=2,又∵DG⊥BC,∴DG⊥EF,∴四边形DEGF的面积=EF•DG=.(10分)
13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.
解答:(1)证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE,∴AB=AF.
∴AE﹣AB=AC﹣AF,即FC=BE;
(2)解:∵AD=DC=2,DF⊥AC,∴AF=AC=AE.
∴AG=CG,∴∠E=30°.
∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴FC=,∵AD∥BC,∴∠ACG=∠FAD=30°,∴CG=2,∴AG=2.
14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.
(1)证明:∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=90°,∴∠BAD=∠ABC=90°,∵DE⊥EC,∴∠AED+∠BEC=90°
∵∠AED+∠ADE=90°,∴∠BEC=∠ADE,∵∠DAE=∠EBC,AE=BC,∴△EAD≌△EBC,∴AD=BE.
(2)答:△ABF是等腰直角三角形.
理由是:延长AF交BC的延长线于M,∵AD∥BM,∴∠DAF=∠M,∵∠AFD=∠CFM,DF=FC,∴△ADF≌△MFC,∴AD=CM,∵AD=BE,∴BE=CM,∵AE=BC,∴AB=BM,∴△ABM是等腰直角三角形,∵△ADF≌△MFC,∴AF=FM,∴∠ABC=90°,∴BF⊥AM,BF=AM=AF,∴△AFB是等腰直角三角形.
15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:AD=AE;
(2)若AD=8,DC=4,求AB的长.
解答:(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴,∴△ADC≌△AEC,(AAS)
∴AD=AE;
(2)解:由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.
说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.
16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;
(2)若AD=4,BC=14,求EF的长.
(1)证明:∵AD∥CB,∴∠ADB=∠CBD,又BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴△ABD是等腰三角形,已知E是BD的中点,∴AE⊥BD.
(2)解:延长AE交BC于G,∵BD平分∠ABC,∴∠ABE=∠GBE,又∵AE⊥BD(已证),∴∠AEB=∠GEB,BE=BE,∴△ABE≌△GBE,∴AE=GE,BG=AB=AD,又F是AC的中点(已知),所以由三角形中位线定理得:
EF=CG=(BC﹣BG)=(BC﹣AD)
=×(14﹣4)=5.
答:EF的长为5.
17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.
(1)求证:CD=BE;
(2)若AD=3,DC=4,求AE.
(1)证明:∵AD∥BC,∴∠DAC=∠BCE,而BE⊥AC,∴∠D=∠BEC=90°,AC=BC,∴△BCE≌△CAD.
∴CD=BE.
(2)解:在Rt△ADC中,根据勾股定理得AC==5,∵△BCE≌△CAD,∴CE=AD=3.
∴AE=AC﹣CE=2.
18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.
解:如图,过点D作DF∥AB,分别交AC,BC于点E,F.(1分)
∵AB⊥AC,∴∠AED=∠BAC=90度.
∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.
在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4×=2(2分)
在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=1,∴DE=AE=.∴CE=AC﹣AE=.(4分)
在Rt△DEC中,∠CED=90°,∴DC==.(5分)
19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.
(1)求证:BF=EF﹣ED;
(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.
证明:∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,∴△FCE≌△F′CE,∴EF′=EF=DF′+ED,∴BF=EF﹣ED;
(2)解:∵AB=BC,∠B=80°,∴∠ACB=50°,由(1)得∠FEC=∠DEC=70°,∴∠ECB=70°,而∠B=∠BCD=80°,∴∠DCE=10°,∴∠BCF=30°,∴∠ACF=∠BCA﹣∠BCF=20°.
20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.
(1)若EF⊥AF,AF=4,AB=6,求
AE的长.
(2)若点F是CD的中点,求证:CE=BE﹣AD.
解:(1)作EM⊥AB,交AB于点M.∵AE=BE,EM⊥AB,∴AM=BM=×6=3;
∵∠AME=∠MAF=∠AFE=90°,∴四边形AMEF是矩形,∴EF=AM=3;
在Rt△AFE中,AE==5;
(2)延长AF、BC交于点N.
∵AD∥EN,∴∠DAF=∠N;
∵∠AFD=∠NFC,DF=FC,∴△ADF≌△NCF(AAS),∴AD=CN;
∵∠B+∠N=90°,∠BAE+∠EAN=90°,又AE=BE,∠B=∠BAE,∴∠N=∠EAN,AE=EN,∴BE=EN=EC+CN=EC+AD,∴CE=BE﹣AD.
.21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.
(1)求证:DH=(AD+BC);
(2)若AC=6,求梯形ABCD的面积.
解:(1)证明:过D作DE∥AC交BC延长线于E,(1分)
∵AD∥BC,∴四边形ACED为平行四边形.(2分)
∴CE=AD,DE=AC.
∵四边形ABCD为等腰梯形,∴BD=AC=DE.
∵AC⊥BD,∴DE⊥BD.
∴△DBE为等腰直角三角形.(4分)
∵DH⊥BC,∴DH=BE=(CE+BC)=(AD+BC).(5分)
(2)∵AD=CE,∴.(7分)
∵△DBE为等腰直角三角形BD=DE=6,∴.
∴梯形ABCD的面积为18.(8分)
注:此题解题方法并不唯一.
22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.
(1)求证:△AGE≌△DAB;
(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.
(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.
∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∵∠AGD=∠BAD,AG=AD,∴△AGE≌△DAB;
(2)解:由(1)知AE=BD,∠ABD=∠AEG.
∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.
∴EF=BD,∴EF=AE.
∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.
∴△AFE是等边三角形,∠AFE=60°.
23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.
(1)试说明梯形ABCD是等腰梯形;
(2)若AD=1,BC=3,DC=,试判断△DCF的形状;
(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.
解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;
(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;
(3)共四种情况:
∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;
当P与F重合时,△PCD是等腰三角形,∴PB=2;
当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;
当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.
故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)
24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.
(1)证明:△ABE≌△DAF;
(2)求∠BPF的度数.
解答:(1)证明:∵在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,∴AB=CD,∵AD=DC,∴BA=AD,∠BAE=∠ADF=120°,∵DE=CF,∴AE=DF,在△BAE和△ADF中,∴△ABE≌△DAF(SAS).
(2)解:∵由(1)△BAE≌△ADF,∴∠ABE=∠DAF.
∴∠BPF=∠ABE+∠BAP=∠BAE.
而AD∥BC,∠C=∠ABC=60°,∴∠BPF=120°.
25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.
(1)求∠ABC的度数;
(2)如果BC=8,求△DBF的面积?
解答:解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠DBC=∠ABD,∵在梯形ABCD中AB=DC,∴∠ABC=∠DCB=2∠DBC,∵BD⊥DC,∴∠DBC+2∠DBC=90°
∴∠DBC=30°
∴∠ABC=60°
(2)过点D作DH⊥BC,垂足为H,∵∠DBC=30°,BC=8,∴DC=4,∵CF=CD∴CF=4,∴BF=12,∵∠F+∠FDC=∠DCB=60°,∠F=∠FDC
∴∠F=30°,∵∠DBC=30°,∴∠F=∠DBC,∴DB=DF,∴,在直角三角形DBH中,∴,∴,∴,即△DBF的面积为.
26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.
(1)求证:△AGD为正三角形;
(2)求EF的长度.
(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°
∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.
27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC于F.
(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.
(2)求证:ED=BE+FC.
解:(1)∵∠BEC=75°,∠ABC=90°,∴∠ECB=15°,∵∠ECD=45°,∴∠DCF=60°,在Rt△DFC中:∠DCF=60°,FC=3,∴DF=3,DC=6,由题得,四边形ABFD是矩形,∴AB=DF=3,∵AB=BC,∴BC=3,∴BF=BC﹣FC=3﹣3,∴AD=DF=3﹣3,∴C梯形ABCD=3×2+6+3﹣3=9+3,答:梯形ABCD的周长是9+3.
其实也还有一种方法的啦。
(2)过点C作CM垂直AD的延长线于M,再延长DM到N,使MN=BE,∴CN=CE,可证∠NCD=∠DCE,∵CD=CD,∴△DEC≌△DNC,∴ED=EN,∴ED=BE+FC.
28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.
(1)求证:△BCE≌△AFE;
(2)若AB⊥BC且BC=4,AB=6,求EF的长.
(1)证明:∵AD∥BC,E是AB的中点,∴AE=BE,∠B=∠EAF,∠BCE=∠F.
∴△BCE≌△AFE(AAS).
(2)解:∵AD∥BC,∴∠DAB=∠ABC=90°.
∵AE=BE,∠AEF=∠BEC,∴△BCE≌△AFE.
∴AF=BC=4.
∵EF2=AF2+AE2=9+16=25,∴EF=5.
29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:
(1)△BFC≌△DFC;
(2)AD=DE;
(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.
(1)∵DC=BC,∠1=∠2,CF=CF,∴△DCF≌△BCF.
(2)延长DF交BC于G,∵AD∥BG,AB∥DG,∴四边形ABGD为平行四边形.
∴AD=BG.
∵△DFC≌△BFC,∴∠EDF=∠GBF,DF=BF.
又∵∠3=∠4,∴△DFE≌△BFG.
∴DE=BG,EF=GF.
∴AD=DE.
(3)∵EF=GF,DF=BF,∴EF+BF=GF+DF,即:BE=DG.
∵DG=AB,∴BE=AB.
∵C△DFE=DF+FE+DE=6,∴BF+FE+DE=6,即:EB+DE=6.
∴AB+AD=6.
又∵AD=2,∴AB=4.
∴DG=AB=4.
∵BG=AD=2,∴GC=BC﹣BG=5﹣2=3.
又∵DC=BC=5,在△DGC中∵42+32=52
∴DG2+GC2=DC2
∴∠DGC=90°.
∴S梯形ABCD=(AD+BC)•DG
=(2+5)×4
=14.
30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.
(1)求证:四边形ABED是菱形;
(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.
解答:解:(1)证明:∵AD∥BC,DE2=CD2+CE2=42+32=25,∴∠OAD=∠OEB,∴DE=5
又∵AB=AD,AO⊥BD,∴AD=BE=5,∴OB=OD,∴S梯形ABCD=.
又∵∠AOD=∠EOB,∴△ADO≌△EBO(AAS),∴AD=EB,又∵AD∥BE,∴四边形ABCD是平行四边形,又∵AB=AD
∴四边形ABCD是菱形.
(2)∵四边形ABCD是菱形,∴AD=DE=BE,