第一篇:初二期末几何证明题复习(本站推荐)
初二期末几何证明题复习2014-6-1
21.在△ABC 中,AB AC,A 0,将线段 BC 绕点 B 逆时针旋转 60得到线段 BD,再将线
段BD平移到EF,使点E在AB上,点F在AC上.(1)如图 1,直接写出 ABD和CFE 的度数;
(2)在图1中证明: E CF;(3)如图2,连接 CE,判断△CEF 的形状并加以证明.
B
图
1B
C
图2
2.将△ABC绕点A顺时针旋转得到△ADE,DE的延长线与BC相交于点F,连接AF.
(1)如图1,若BAC==60,DF2BF,请直接写出AF与BF的数量关系;
(2)如图2,若BAC<=60,DF3BF,猜想线段AF与BF的数量关系,并证明你的猜想;解:
3.已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上的一点,直线AE、CD相交于点P,且∠APD=45°,求证BD=CE.
图1 图
4.在△ABC中,∠ACB=90°,AC>BC,D是AC边上的动点,E是BC边上的动点,AD=BC,CD=BE.
(1)如图1,若点E与点C重合,连结BD,请写出∠BDE的度数;(2)若点E与点B、C不重合,连结AE、BD交于点F,请在图2中补全图形,并求出∠BFE的度数.
5.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;
(2)求证:CF=AB+AF.
6.如图,在正方形ABCD中,M是AD的中点,连接BM,BM的垂直平分线交BC的延长线于F,连接MF交CD于N.求证:(1)BM=EF;(2)2CN=DN.
第二篇:初二几何证明题
1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论
A
E
B
第三篇:初二几何证明题
初二几何证明题
1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。M为AB中点,联结ME,MD、ED
求证:角EMD=2角DAC
证明:
∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA
∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA
∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC
2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D
求证:∠AHE=∠BGE
证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:
∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点
∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF
∵FM‖BG,∴∠MFE=∠BGF
∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题
这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受
如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC
证明:
BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)
==>BE=AB*BC/(BC+AC)
同理:CD=AC*BC/(BC+AB)
假设AB≠AC,不妨设AB>AC.....(*)
AB>AC==>BC+ACAC*BC
==>AB*AB/(BC+AC)>AC*BC/(BC+AB)
==>BE>CD
AB>AC==>∠ACB>∠ABC
∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/
2==>∠BEC>∠BDC
过B作CE平行线,过C作AB平行线,交于F,连DF
则BECF为平行四边形==>∠BFC=∠BEC>∠BDC.....(1)
BF=CE=BD==>∠BDF=∠BFD
CF=BE>CD==>∠CDF>∠CFD
==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC...(2)
(1)(2)矛盾,从而假设(*)不成立
所以AB=AC。
2、两地角的平分线相等,为等腰三角形
作三角形ABC,CD,BE为角C,B的角平分线,交于AB,BE.两平分线交点为O
连结DE,即DE平行BC,所以三角形DOC与COB相似。
有DO/DC=EO/EB,又EB=DC所以DO=EO,三角形COB为等腰
又角ODE=OCB=OED=OBC
又因为BE和DC是叫平分线,所以容易得出角C=角B(这个打出来太麻烦了),即ABC为等腰。
第四篇:初二几何证明题
28.(本小题满分10分)
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。
21.(本小题满分9分)
如图,直线yxm与双曲线y
(1)求m及k的值; k相交于A(2,1)、B两点. xyxm,(2)不解关于x、y的方程组直接写出点B的坐标; ky,x
(3)直线y2x4m经过点B吗?请说明理由.
(第21题)
28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点C坐标是),当点D运动8.5秒时所在位置的坐标是,);
(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;
(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):
题28(a)图题28(b)图
(10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD.(10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A
出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG。
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P的运动路线的长。
23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.
CE
27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30º.
DF求 FC 的值.
图1 E C
E 图2 C
第五篇:中考几何证明题复习
中考复习
(二)中考复习:几何证明题
说明一:在直角三角形中,或是题中出现多个直角时,要证明两个角相等,涉及到的知识点:
同角(或等角)的余角相等。
例1:已知:如图,在△ABC中,∠ACB=90,CDAB于点D,点E 在AC上,CE=BC,过E点作AC的垂
线,交CD的延长线于点F.求证:AB=FC
说明二:(1)一般情形,题中有多个问题时,第二问都与第一问有直接的关系,利用第一问的结论解题。(2)判别菱形的方法:例:如图,在平行四边形ABCD中,AE
(1)求证:△ABE∽△ADF;(2)若AG
例3:如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3, AB
⑴求证:△AOB为等边三角形;⑵求BF的长.A
AH
BC
A
E
于E,AF
CD
于F,BD与AE、AF分别相交于G、H.
B
D,求证:四边形ABCD是菱形.
D
B
E
C
说明:在解梯形的题中,一般需要作辅助线。
例4:如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长。
说明:证明正方形的方法:例:如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。(1)试探究,四边形BECF是什么特殊的四边形;
(2)当A的大小满足什么条件时,四边形BECF是正方形? 请回答并证明你的结论.例:如图,在梯形ABCD中,AD∥BC,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ60保持不变.设PCx,MQy,求
y与x的函数关系式;
C
(3)在(2)中当y取最小值时,判断△PQC的形状,并说明理由.
A
M
D
60°
B
P
C
圆中计算与相关证明
说明:关于圆的计算,若出现直径,要联想到:直径所对的圆周角是直角;
若出现切线,要连接圆心和切点,就出现直角;
如弦长,联想到垂径定理(垂直,平分弦,构建直角三角形)
例:如图,AB是半圆O上的直径,E是 ⌒BC的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于
点F.已知BC=8,DE=2.⑴求⊙O的半径;⑵求CF的长;⑶求tan∠BAD 的值。
说明:证明圆的切线的办法:(1)连半径,证垂直;(2)作垂直,证半径。例:如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,ACCD,D30°,(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求弧BC的长.(结果保留π)
例:如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE。(1)若BE是△DEC的外接圆的切线,求∠C的大小?(2)当AB=1,BC=
2,求△DEC外接圆的半径。
A
B
O B
如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)求证:EF是⊙O的切线;(2)求DE的长.
说明:出现三角函数值,必须在直角三角形中,或作垂直或找出相等的角,该角在直角三角形中。如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过D作DE⊥AC,垂足为E.
(1)求证:AB=AC;(2)若⊙O的半径为4,∠BAC=60º,求DE的长.
C
F
B