第一篇:高中几何证明题
高中几何证明题
1、(本题14分)如图5所示,AF、DE分别世O、O1的直径,AD与两圆所在的平面均垂直,AD8.BC是O的直径,ABAC6,OE//AD.D(I)求二面角BADF的大小;
(II)求直线BD与EF所成的角.AF图
5解:(Ⅰ)∵AD与两圆所在的平面均垂直,∴AD⊥AB, AD⊥AF,故∠BAD是二面角B—AD
—F的平面角,依题意可知,ABCD是正方形,所以∠BAD=450.即二面角B—AD—F的大小为450;
(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,2,0),B(32,0,0),D(0,32,8),E(0,0,8),F(0,32,0)所以,(2,32,8),(0,2,8)
cosBD,EFBD与01864EF 10设异面直线所成角为,则
cos|cosBD,EF| 10
10直线BD与EF所成的角为
2.(本题满分13分)
如图,已知正三棱柱ABC—A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45.
(Ⅰ)求此正三棱柱的侧棱长;
(Ⅱ)求二面角ABDC的大小;
(Ⅲ)求点C到平面ABD的距离.
A1B
1C
1解:(Ⅰ)设正三棱柱ABC—A1B1C1的侧棱长为x.取BC中点E,连AE.
A1
ABC是正三角形,AEBC. 又底面ABC侧面BB1C1C,且交线为BC
.1AE侧面BB1C1C.
B
C1
连ED,则直线AD与侧面BB1C1C所成的角为ADE45.……………2分 在RtAED中,tan45
AE
ED,解得x…………3分
此正三棱柱的侧棱长为……………………4分
注:也可用向量法求侧棱长.
(Ⅱ)解法1:过E作EFBD于F,连AF,AE侧面BB1C1C,AFBD.
AFE为二面角ABDC的平面角.……………………………6分 在RtBEF中,EFBEsinEBF,又
BE1,sinEBF
又AE
CDEF.
BD在RtAEF中,tanAFE
AE
3.…………………………8分 EF
故二面角ABDC的大小为arctan3.…………………………9分
解法2:(向量法,见后)
BD平面AEF,平面AEF平面ABD,(Ⅲ)解法1:由(Ⅱ)可知,且交线为AF,过E作EGAF于G,则EG平面ABD.…………10分
在RtAEF中,EG
AEEF
AF
.…………12分 E为BC中点,点C到平面ABD的距离为2EGACB解法2:(思路)取AB中点H,连CH和DH,由C
.…………13分 10
ADB,D,易得平面ABD
平面CHD,且交线为DH.过点C作CIDH于I,则CI的长为点C到平面ABD的距离.
解法3:(思路)等体积变换:由VCABDVABCD可求. 解法4:(向量法,见后)题(Ⅱ)、(Ⅲ)的向量解法:
(Ⅱ)解法2:如图,建立空间直角坐标系
则AB(0,1,0),C(0,1,0),D(
设n1(x,y,z)为平面ABD的法向量.
yn10,由 得y0n02
取n1().…………6分
又平面BCD的一个法向量n2(0,0,1).…………7分
n1n2(6,3,1)(0,0,1).…………8分 cosn1,n2
n1n21(6)2()21210
.…………9分
(Ⅲ)解法4:由(Ⅱ)解法2,n1(),CA(0,1…………10分
结合图形可知,二面角ABDC的大小为点C到平面ABD的距离d来源:(深圳家教)
(0,1,)(6,,1)(6)2(3)212
=
2.13分 10
第二篇:高中几何证明题
高中几何证明题
如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.(1)求证,D1E//平面ACB1
(2)求证,平面D1B1E垂直平面DCB1
证明:
1):连接AD1,AD1²=AD²+DD1²=B1C1²+C1E²=B1E²
所以AD1=B1E
同理可证AB1=D1E
所以四边形AB1ED1为平行四边形,AB1//A1E
因为AB1在平面ACB1上
所以D1E//平面ACB1
2):连接A1D,A1B1//CD,面A1B1CD与面CDB1为同一个平面
由(1)可知面D1B1E与面AD1B1E为同一平面
正方形ADD1A1的对角线AD1⊥A1D
在长方体ABCD-A1B1C1D1中,CD⊥面ADD1A1,所以CD⊥AD1
AD1与A1D相交,所以AD1⊥AB1ED1
所以面A1B1CD⊥AD1B1E
即:面D1B1E⊥面DCB1
我现在高二,以前老师教几何证明没学好,现在想亡羊补牢.但不知道这类型题应抓什么学,找什么记,哪些是基础,证明的步骤....只有多练,真的,几何证明题有很多固定的结题模式,但是参考书不会给你列出来,老师也不讲,你随便买一本几何专题的练习书来做,或者,如果你定力不好的话,可以去报一个补习班,专门补习几何专题的。
我从你想知道的这些知识觉得你有点急于求成,但是学好几何不是一天两天的事,其实高考的几何也不会很难的。
做得多,有了感觉,考试的时候自然得心应手,这是实话。
已知pA⊥平面ABCD,且四边形ABCD为矩形,M,N分别是AB,pC的中点.(1)证MN⊥CD.(2)若∠pDA=45度,求证MN⊥平面pCD
第一问,我证出来了.麻烦能讲下解这类题的思路
满意答案好评率:100%
对于这种空间几何题,用向量解决是一种通法,不知你学过没。但对于这一题,立体几何的知识足够解决了,记住面线垂直判定的方法,本质为证明线线垂直,找到平面内的两条相交直线与那条直线垂直,即可得证。此题(2)问,只要找pD和CD即可,注意∠pDA=45度这个条件即可证pD⊥MN。不懂追问。
继续追问:
∠pDA=45度这个条件即可证pD⊥MN?
补充回答:∠pDA=45度,可知△pAD为等腰直角△,取pD中点E,连接AE和AN,可以知道四边形AMNE为平行四边形,可知MN∥AE,而AE⊥pD(△pAD为等腰直角△,E为中点),则pD⊥MN。
第三篇:几何证明题
几何证明题集(七年级下册)
姓名:_________班级:_______
一、互补”。
E
D
二、证明下列各题:
1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D
3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC
A1 O
4B
D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF
N
M
AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C
EF
AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE
FD
2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC
A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B
F
ED
AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A
EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F
A
G
BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F
E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A
CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA
ED
C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA
E
DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.
第四篇:几何证明题(难)
附加题:
1、已知:如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ
2、已知:如图,在△ABC中,已知AB=AC,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点。求证:△ABE∽△ECM;
3、已知:如图,四边形ABCD,M为BC边的中点.∠B=∠AMD=∠C 求证:AM=DM
DA
BCM
4、如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,找出图中的三对相似三角形,并给予证明。
D
C
E
FG
A BP
5、已知:如图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.
证明:把△ACF绕A点旋转90°使AC和AB重合;设F旋转之后的点是G
6、已知:如图,AB∥GH∥CD,求证:
111+= ABCDGH7、已知:点F是等边三角形ABC的边AC上一动点,(1)、如图,过点F的直线DE交线段AB于点D,交BC于点E,且CE=AD,求证:FD=FE A
DG F
CBE
(2)、如图,过点F的直线DE交BA的延长线于点D,交BC于点E,且CE=AD,求证:FD=FE
第五篇:几何证明题训练
仁家教育---您可以相信的品牌!
仁家教育教案
百川东到海,何时复西归?
少壮不努力,老大徒伤悲。
您的理解与支持是我们前进最大的动力!1
您的理解与支持是我们前进最大的动力!
您的理解与支持是我们前进最大的动力!
您的理解与支持是我们前进最大的动力!
您的理解与支持是我们前进最大的动力!