第一篇:初中几何证明题
(1)如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:
证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则⊿AEC∽⊿ADB,AE/AD=AC/AB;
又∠EAD=∠CAB,则⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)
连接DG,EG.点G为BC的中点,则DG=BC/2;(直角三角形斜边的中线等于斜边的一半)同理可证:EG=BC/2.故DG=EG.又F为DE的中点,则FG⊥DE.(等腰三角形底边的中线也是底边的高)-----------------(2)所以,AO∥FG.(2)已知梯形ABCD中,对角线AC与腰BC相等,M是底边AB的中点,L是边DA延长线上一点连接LM并延长交对角线BD于N点
延长LM至E,使LM=ME。
∵AM=MB,LM=ME,∴ALBE是平行四边形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。
延长CN交AB于F,令LC与AB的交点为G。
∵AB是梯形ABCD的底边,∴BF∥CD,∴CN/FN=DN/BN。
由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。
由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。
由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,∴∠ALG=∠BEF,结合证得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。
∵AC=BC,∴∠CAG=∠CBF,结合证得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。
(3)如图,三角形ABC中,D,E分别在边AB,AC上且BD=CE,F,G分别为BE,CD的中点,直线FG交
AB于P,交AC于Q.求证:AP=AQ
取BC中点为H
连接HF,HG并分别延长交AB于M点,交AC于N点
由于H,F均为中点
易得:
HM‖AC,HN‖AB
HF=CE/2,HG=BD/
2得到:
∠BMH=∠A
∠CNH=∠A
又:BD=CE
于是得:
HF=HG
在△HFG中即得:
∠HFG=∠HGF
即:∠PFM=∠QGN
于是在△PFM中得:
∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN
在△QNG中得:
∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN
即证得:
∠APQ=∠AQP
在△APQ中易得到: AP=AQ
(4)ABCD为圆内接凸四边形,取△DAB,△ABC,△BCD,△CDA的内心O,O,O,O.求证:OOOO为矩形. 123
41234
已知锐角三角形ABC的外接圆O,过B,C作圆的切线交于E,连结AE,M为BC的中点。求证角BAM=角EAC。
设点O为△ABC外接圆圆心,连接OP;
则O、E、M三点共线,都在线段BC的垂直平分线上。
设AM和圆O相交于点Q,连接OQ、OB。
由切割线定理,得:MB² = Q·MA ;
由射影定理,可得:MB² = ME·MO ;
∴MQ·MA = ME·MO,即MQ∶MO = ME∶MA ;
又∵ ∠OMQ = ∠AME,∴△OMQ ∽ △AME,可得:∠MOQ = ∠MAE。
设OM和圆O相交于点D,连接AD。
∵弧BD = 弧CD,∴∠BAD = ∠CAD。
∵∠DAQ =(1/2)∠MOQ =(1/2)∠MAE,∴∠DAE = ∠MAE∠DAE = ∠CAD-∠DAQ = ∠CAM。
设AD、BE、CF是△ABC的高线,则△DEF称为△ABC的垂足三角形,证明这些高线平分垂足三角形的内角或外角 设交点为O,OE⊥EC,OD⊥DC,则CDOE四点共圆,由圆周角定理,∠ODE=∠OCE。
CF⊥FC,AD⊥DC,则ACDF四点共圆,由圆周角定理,∠ADF=∠ACF=∠OCE=∠ODE,AD平分∠EDF。
其他同理。
平行四边形内有一点P,满足角PAB=角PCB,求证:角PBA=角PDA
过P作PH//DA,使PH=AD,连结AH、BH
∴四边形AHPD是平行四边形
∴∠PHA=∠PDA,HP//=AD
∵四边形ABCD是平行四边形
∴AD//=BC
∴HP//=BC
∴四边形PHBC是平行四边形
∴∠PHB=∠PCB
又∠PAB=∠PCB
∴∠PAB=∠PHB
∴A、H、B、P四点共圆
∴∠PHA=∠PBA
∴∠PBA=∠PDA
补充:
补充:
把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
已知点o为三角型ABC在平面内的一点,且向量OA2+BC2=OB2+CA2=OC2+AB2,,则O为三角型ABC的()
只说左边2式子 其他一样
OA2+BC2=OB2+CA2 移项后平方差公式可得
(OA+OB)(OA-OB)=(CA+BC)(CA-BC)化简
得 BA(OA+OB)=BA(CA-BC)
移项并合并得BA(OA+OB+BC-CA)=0
即 BA*2OC=0 所以BA和OC垂直
同理AC垂直BO BC垂直AO哈哈啊是垂心
设H是△ABC的垂心,求证:AH2+BC2=HB2+AC2=HC2+AB2.
作△ABC的外接圆及直径AP.连接BP.高AD的延长线交外接圆于G,连接CG. 易证∠HCB=∠BCG,从而△HCD≌△GCD.
故CH=GC.
又显然有∠BAP=∠DAC,从而GC=BP.
从而又有CH2+AB2=BP2+AB2=AP2=4R2.
同理可证AH2+BC2=BH2+AC2=4R2.
第二篇:初中数学几何证明题
平面几何大题 几何是丰富的变换
多边形平面几何有两种基本入手方式:从边入手、从角入手
注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方式?
难题
第三篇:初中数学几何证明题
初中数学几何证明题
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。
一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可龋我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。
四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。
五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。
第四篇:初中几何基础证明题(初一)
几何证明题(1)
1.如图,AD∥BC,∠B=∠D,求证:AB∥CD。
A
D
C
2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB。
A
D
/
F
2BG BE
3.已知∠1=∠2,∠1=∠3,求证:CD∥OB。
A
PC 3D /2 BO
4.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP。
D P
/2
CBO
3C
5.已知∠1=∠2,∠2=∠3,求证:CD∥EB。
C3D / BOE6.如图∠1=∠2,求证:∠3=∠4。
/3BA
DC42
7.已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。
AB
CG F ED
8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。
cd a
b32
9.如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED。
A
D
F
EBC
10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l1∥l2,l3∥l5,l3l2∥l4。
l11
l22
344 l5
11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB∥CD。
BA 12
E CD
12、如图,∠A=2∠B,∠D=2∠C,求证:AB∥CD。
CD
O
AB
13、如图,EF∥GH,AB、AD、CB、CD是∠EAC、∠FAC、∠GCA、∠HCA的平分线,求证:∠BAD=∠B=∠C=∠D。
A
FE
BD
GHC
14、已知,如图,B、E、C在同一直线上,∠A=∠DEC,∠D=∠BEA,∠A+∠D=900,求证:AE⊥DE,AB∥CD。
A
D
CEB
15、如图,已知,BE平分∠ABC,∠CBF=∠CFB=650,∠EDF=500,求证:BC∥AE。
E
CD
BA
16、已知,∠D=900,∠1=∠2,EF⊥CD,求证:∠3=∠B。
AD1
E3F
BC17、如图,AB∥CD,∠1=∠2,∠B=∠3,AC∥DE,求证:AD∥BC。
DA 312
BCE
第五篇:浅谈初中几何证明题教学
浅谈初中几何证明题教学
学习几何对培养学生逻辑思维及逻辑推理能力有着特殊的作用。对于众多的几何证明题,帮助学生寻找证题方法和探求规律,对培养学生的证题推理能力,往往能够收到较好的效果,这对学生证明中克服无从下手,胡思乱想,提高解题的正确性和速度,达到熟练技巧是有积极作用的。在几何证明题教学中,我是从以下几方面进行的:
一、培养学生学会划分几何命题中的“题设”和“结论”。
1、每一个命题都是由题设和结论两部分组成的,要求学生从命题的结构特征进行划分,掌握重要的相关联词句。例:“如果„„,那么„„。”“若„„,则„„”等等。用“如果”或“若”开始的部分就是题设。用“那么”或“则”开始的部分就是结论。有的命题的题设和结论是比较明显的。例:如果一个三角形有两个角相等(题设),那么这两个角所对的边相等(结论)。但有的命题,它的题设和结论不十分明显,对于这样的命题,可要求学生将它改写成“如果„„,那么„„”的形式。例如:“对顶角相等”可改写成:“如果两个角是对顶角(题设),那么这两个角相等(结论)”。
以上对命题的“题设”和“结论”划分只是一种形式上的记忆,不能从本质上解决学生划分命题的“题设”、“结论”的实质问题,例如:“等腰三角形两腰上的高相等”学生会认为这个命题较难划分题设和结论,认为只有题设部分,没有结论部分,或者因为找不到“如果„„,那么„„”的词句,或者不会写成“如果„„,那么„„”等的形式而无法划分命题的题设和结论。
2、正确划分命题的“题设”和“结论”,必须使学生理解每个数学命题都是一个完整无缺的句子,是对数学的一定内容和一定本质属性的判断。而每一个命题都是由题设和结论两部分组成的,是判断一件事情的语句。在一个命题中被判断的“对象”是命题的“题设”,也就是“已知”。判断出来的“结果”就是命题的“结论”,也就是“求证”。总之,正确划分命题的“题设”和“结论”,就是要分清什么是命题中被判断的“对象”,什么是命题中被判断出来的“结果”。
在教学中,要在不断的训练中加深学生对数学命题的理解。
二、培养学生将文字叙述的命题改写成数学式子,并画出图形。
1、按命题题意画出相应的几何图形,并标注字母。
2、根据命题的题意结合相应的几何图形,把命题中每一个确切的数学概念用它的定义,数学符合或数学式子表示出来。命题中的题设部分即被判断的“对象”写在“已知”一项中,结论部分即判断出来的“结果”写在“求证”一项中。
例:求证:邻补角的平分线互相垂直。
已知:如图∠AOC+∠BOC=180°
OE、OF分别是∠AOC、∠BOC的平分线。
求证:OE⊥OF
三、培养学生学会推理证明:
1、几何证明的意义和要求
对于几何命题的证明,就是需要作出一判断,这个判断不是仅靠观察和猜想,或反通过实验和测量感性的判断,而必须是经过一系列的严密的逻辑推理和论证作出的理性判断。推理论证的过程要符合客观实际,论证要有充分的根据,不能凭主观想象。证明中的每一点推理论证的根据就是命题中给出的题设和已证事项,定义、公理和定理。换言之,几何命题的证明,就是要把给出的结论,用充分的根据,严密的逻辑推理加以证明。
2、加强分析训练、培养逻辑推理能力
由于命题的类型各异,要培养学生分析与综合的逻辑推理能力,特别要重视问题的分析,执果索因、进而证明,这里培养逻辑思维能力的好途径,也是教学的重点和关键。在证明的过程中要培养学生:在证明开始时,首先对命题竹:分析、推理,并在草稿纸上把分析的过程写出来。初中几何证题常用的分析方法有:
①顺推法:即由条件至目标的定向思考方法。在探究解题途径时,我们从已知条件出发进行推理。顺次逐步推向目标,直到达到目标的思考过程。
如:试证:平行四边形的对角线互相平分。
已知:◇ABCD,O是对角线AC和BD的交点。
求证:CA=OC、OB=OD
分析:
证明:∵四边形ABCD是◇
∴ AB∥CDAB=DC
∴ ∠1=∠4∠2=∠
3在△ABO和△CDO中
∴ △ABO≌△CDO(ASA)
∴ OA=OCOB=OD
②倒推法:即由目标至条件的定向思考方法。在探究证题途径时,我们不是从已知条件着手,而是从求证的目标着手进行分析推理,并推究由什么条件可获得这样的结果,然后再把这些条件作结果,继续推究由什么条件,可以获得这样的结果,直至推究的条件与已知条件相合为止。
如:在△ABC中,EF⊥ABCD⊥ABG在AC上且∠1=∠2,求证:∠AGD=∠ACB
分析:
要证∠AGD=∠ACB就要证DG∥BC,就要证:∠1=∠3。要证∠1=∠3,就要证:∠2=∠3证明:△在ABC中
③倒推———顺推法:就是先从倒推入手,把目探究到一定程度,再回到条件着手顺推,如果两个方向汇合了,问题的条件与目标的联系就清楚了,与此同时解题途径就明确了。
3、学会分析
在几何证明的教学过程中,要注意培养学生添辅助线的能力,要注意培养学生的创新思维能力和处理问题的机智能力;要使学生认识到在几何证明题中,辅助线引导适当,可使较难的证明题转为较易证明题。但辅助线不能乱引,而且有一定目的,在一定的分析基础上进行的。因此怎样引辅助线是依据命题的分析而确定的。
例:如图两个正方形ABCD和OEFG的边长都是a,其中点O交ABCD的中心,OG、OE分别交CD、BC于H、K。
分析:四边形OKCH不是特殊的四边形,直接计算其面积比较困难,连 OC把它分别割成两部分,考虑到ABCD为正方形,把△OCK绕点O按顺时针方向旋转90°到△ODH,易证△OCK≌△ODH∴S△ODH
∴SOKCH=S△OCH[下转50页]
[上接49页]=S△ODH+S△DCH=S△OCD
四、培养学生证题时养成规范的书写习惯
用填充形式训练学生证题的书写格式和逻辑推理过程。让学生也实践也学习证题的书写格式,使书写规范,推理有根据。经过一段时间的训练后,一转入学生独立书写,这样,证题的推理过程及书写都比较规范。
如:已知AB∥EF ∠1+∠2=180°求证:CD∥EF
证:∵∠1+∠2=180°()
综上可得:对于初中几何证题,教师要反复强调这样一个模式:要什么———有什么———缺什么———补什么。按照上述模式,反复训练,学生是能够逐步熟悉几何证题的格式,掌握初中几何证题的正确方法。