第一篇:高中几何证明题
高中几何证明题
如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.(1)求证,D1E//平面ACB1
(2)求证,平面D1B1E垂直平面DCB1
证明:
1):连接AD1,AD1²=AD²+DD1²=B1C1²+C1E²=B1E²
所以AD1=B1E
同理可证AB1=D1E
所以四边形AB1ED1为平行四边形,AB1//A1E
因为AB1在平面ACB1上
所以D1E//平面ACB1
2):连接A1D,A1B1//CD,面A1B1CD与面CDB1为同一个平面
由(1)可知面D1B1E与面AD1B1E为同一平面
正方形ADD1A1的对角线AD1⊥A1D
在长方体ABCD-A1B1C1D1中,CD⊥面ADD1A1,所以CD⊥AD1
AD1与A1D相交,所以AD1⊥AB1ED1
所以面A1B1CD⊥AD1B1E
即:面D1B1E⊥面DCB1
我现在高二,以前老师教几何证明没学好,现在想亡羊补牢.但不知道这类型题应抓什么学,找什么记,哪些是基础,证明的步骤....只有多练,真的,几何证明题有很多固定的结题模式,但是参考书不会给你列出来,老师也不讲,你随便买一本几何专题的练习书来做,或者,如果你定力不好的话,可以去报一个补习班,专门补习几何专题的。
我从你想知道的这些知识觉得你有点急于求成,但是学好几何不是一天两天的事,其实高考的几何也不会很难的。
做得多,有了感觉,考试的时候自然得心应手,这是实话。
已知pA⊥平面ABCD,且四边形ABCD为矩形,M,N分别是AB,pC的中点.(1)证MN⊥CD.(2)若∠pDA=45度,求证MN⊥平面pCD
第一问,我证出来了.麻烦能讲下解这类题的思路
满意答案好评率:100%
对于这种空间几何题,用向量解决是一种通法,不知你学过没。但对于这一题,立体几何的知识足够解决了,记住面线垂直判定的方法,本质为证明线线垂直,找到平面内的两条相交直线与那条直线垂直,即可得证。此题(2)问,只要找pD和CD即可,注意∠pDA=45度这个条件即可证pD⊥MN。不懂追问。
继续追问:
∠pDA=45度这个条件即可证pD⊥MN?
补充回答:∠pDA=45度,可知△pAD为等腰直角△,取pD中点E,连接AE和AN,可以知道四边形AMNE为平行四边形,可知MN∥AE,而AE⊥pD(△pAD为等腰直角△,E为中点),则pD⊥MN。
第二篇:高中几何证明题
高中几何证明题
1、(本题14分)如图5所示,AF、DE分别世O、O1的直径,AD与两圆所在的平面均垂直,AD8.BC是O的直径,ABAC6,OE//AD.D(I)求二面角BADF的大小;
(II)求直线BD与EF所成的角.AF图
5解:(Ⅰ)∵AD与两圆所在的平面均垂直,∴AD⊥AB, AD⊥AF,故∠BAD是二面角B—AD
—F的平面角,依题意可知,ABCD是正方形,所以∠BAD=450.即二面角B—AD—F的大小为450;
(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,2,0),B(32,0,0),D(0,32,8),E(0,0,8),F(0,32,0)所以,(2,32,8),(0,2,8)
cosBD,EFBD与01864EF 10设异面直线所成角为,则
cos|cosBD,EF| 10
10直线BD与EF所成的角为
2.(本题满分13分)
如图,已知正三棱柱ABC—A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45.
(Ⅰ)求此正三棱柱的侧棱长;
(Ⅱ)求二面角ABDC的大小;
(Ⅲ)求点C到平面ABD的距离.
A1B
1C
1解:(Ⅰ)设正三棱柱ABC—A1B1C1的侧棱长为x.取BC中点E,连AE.
A1
ABC是正三角形,AEBC. 又底面ABC侧面BB1C1C,且交线为BC
.1AE侧面BB1C1C.
B
C1
连ED,则直线AD与侧面BB1C1C所成的角为ADE45.……………2分 在RtAED中,tan45
AE
ED,解得x…………3分
此正三棱柱的侧棱长为……………………4分
注:也可用向量法求侧棱长.
(Ⅱ)解法1:过E作EFBD于F,连AF,AE侧面BB1C1C,AFBD.
AFE为二面角ABDC的平面角.……………………………6分 在RtBEF中,EFBEsinEBF,又
BE1,sinEBF
又AE
CDEF.
BD在RtAEF中,tanAFE
AE
3.…………………………8分 EF
故二面角ABDC的大小为arctan3.…………………………9分
解法2:(向量法,见后)
BD平面AEF,平面AEF平面ABD,(Ⅲ)解法1:由(Ⅱ)可知,且交线为AF,过E作EGAF于G,则EG平面ABD.…………10分
在RtAEF中,EG
AEEF
AF
.…………12分 E为BC中点,点C到平面ABD的距离为2EGACB解法2:(思路)取AB中点H,连CH和DH,由C
.…………13分 10
ADB,D,易得平面ABD
平面CHD,且交线为DH.过点C作CIDH于I,则CI的长为点C到平面ABD的距离.
解法3:(思路)等体积变换:由VCABDVABCD可求. 解法4:(向量法,见后)题(Ⅱ)、(Ⅲ)的向量解法:
(Ⅱ)解法2:如图,建立空间直角坐标系
则AB(0,1,0),C(0,1,0),D(
设n1(x,y,z)为平面ABD的法向量.
yn10,由 得y0n02
取n1().…………6分
又平面BCD的一个法向量n2(0,0,1).…………7分
n1n2(6,3,1)(0,0,1).…………8分 cosn1,n2
n1n21(6)2()21210
.…………9分
(Ⅲ)解法4:由(Ⅱ)解法2,n1(),CA(0,1…………10分
结合图形可知,二面角ABDC的大小为点C到平面ABD的距离d来源:(深圳家教)
(0,1,)(6,,1)(6)2(3)212
=
2.13分 10
第三篇:几何证明题
几何证明题
1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?
答题要求:请写出详细的证明过程,越详细越好.ED平行且等于1/2BC
取MN为BO,OC中点
则MN平行且等于1/2BC
得到ED平行且等于MN,则EDNM是平行四边形
则OD=OM,又M为BO中点,显然BO=2OD
一定过
假设BC中线不经过O点,而与BD交与O'
同理可证AO'=2O'G
再可由平行四边形定理得到O与O'重合所以必过O点
2.在直角梯形ABCD中,角B=角C=90度,AB=BC,M为BC边上一点。且角DMC=45度
求证:AD=AM
(1)几何证明题,首先画图
哎没图不好说啊
就空说吧你在纸上画图
先看已知条件,从已知条件得出直观的结论.因为M是BC边上一点,在三角形DMC中,角DMC=45度,角MCD=角C=90度,可以知道角MDC=45度,则三角形DMC是个等腰直角三角形,MC=CD.又AB=BC,M是BC边上一点,MC长度小于BC,所以知道这个直角梯形是以CD为上底,AB为下底,图形先画对
接下来求证
要证AD=AM,从已知条件中得知,MC=CD,则作一条辅助线就可得证
连接AC
∵AB=BC,角B=90度∴三角形ABC是个等腰直角三角形
∴角BCA=45度
∴角DCA=角BCD-角BCA=45度=角BCA
所以三角形AMC≌三角形ADC(MC=CD,角DCA=角BCA,AC=AC——边角边)
所以AD=AM得证
(2)
延长CD至F点~CF=AB连接AF~~因AB=BC~SO~ABCF是正方形~剩下的就容易了~只要证AFD~和ABM~是一样的3角形就OK了~~哎~快10年没碰几何了~那些专业点的词我都忘了~这题应该是这样吧~不知道有没错
回答者:fenixkingyu-试用期一级2007-8-719:23
上楼的有两处错误:
1.描述错误,ABCF不是四边形,ABFC才是.2.按照条件并不能证明ABFC是正方形.注意:要证明四边形是正方形,必须证明2个问题:
1.该四边形是矩形;2.该四边形是菱形。
(3)
把图画出来就好解了。我是按自己画的图解的,楼主画梯形下面是BA,上面是CD,然后在按我的文字添加辅助线就行了,度那个圆圈打不出来,我就没写了。
证明:连接MD,AM,连接AC并交MD于E
因为角DMC=45,角C=90
所以三角形MCD为等边直角三角形,既角CDM=45
又角B=90AB=BC
所以角CAB=45
由梯形上下两边平行,则内对角相加为180度
因角CAB角DMB=45+45=90
所以角EDA角DAE=90
既AC垂直于MD
在等腰直角三角形CDM中则有ME=ED,且AC垂直于MD
所以AE是三角形AMD的中垂线
既AD=AM(等腰三角形的法则)。
第四篇:几何证明题
几何证明题集(七年级下册)
姓名:_________班级:_______
一、互补”。
E
D
二、证明下列各题:
1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D
3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC
A1 O
4B
D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF
N
M
AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C
EF
AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE
FD
2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC
A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B
F
ED
AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A
EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F
A
G
BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F
E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A
CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA
ED
C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA
E
DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.
第五篇:几何证明题练习
几何证明题练习
1.如图1,Rt△ABC中AB = AC,点D、E是线段AC上两动点,且AD = EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得5分。
①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形; ②点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2)。
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。
E
A
AM
AMD
D
F
E
F
A
F
K
C
AD
D
F
A
EEC
图 16
C
N
B
图 1
5B
MF
MF
图 17
D
C
图 17
图 16图 15
2.(1)如图13-1,操作:把正方形CGEF的对角线 CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M。
探究:线段MD、MF的关系,并加以证明。说明:(1)如果你经历反复探索,没有找到解决问题 A 的方法,请你把探索过程中的某种思路写出来(要求 至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得 7分;选取③完成证明得5分。
① DM的延长线交CE于点N,且AD=NE; A ② 将正方形CGEF绕点C逆时针旋转45°(如图13-2),其他条件不变;③在②的条件下且CF=2AD。(2):将正方形CGEF绕点C旋转任意角度后
(如图13-
3),其他条件不变。探究:线段MD、MF的关系,并加以证明。
D
F
E
图
13-2 D
图13-
33.如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx.MN的形状是否发生改变?若不变,①当点N在线段AD上时(如图2),△P求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.N
A A A D D D B
图1 A B
D F C
B
F C
B
M
图
2F C B
N
F
C
M 图3 D F C
(第3题)A
图5(备用)图4(备用)
4.如图4,△P1OA1,△P2A1A2,△P3A2A3……△PnAn-1An都是等腰直角三角形,点P1、P2、P3……
Pn都在函数y
(x > 0)的图象上,斜边OA1、A1A2、A2A3……An-1An都在x轴上。x
⑴求A1、A2点的坐标;
⑵猜想An点的坐标(直接写出结果即可)
图 1
55.如图5-1,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写
3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得5分。①画出将△ACM绕某一点顺时针旋转180°后的图形; ②∠BAC = 90°(如图17)
附加题:如图5-3,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系。
E
E
AM图 17
C
D
图 18
EC
D
A
D
M图 16
6.O点是△ABC所在平面内一动点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,如果DEFG能构成四边形.
(1)如图,当O点在△ABC内时,求证四边形DEFG是平行四边形.(2)当O点移动到△ABC外时,(1)的结论是否成立?画出图形并说明理由.(3)若四边形DEFG为矩形,O点所在位置应满足什么条件?试说明理由.
A
B
7.如图,已知三角形ABD为⊙O内接正三角形,C为弧BD上任意一点,已知AC=a,求S四边形ABCD。
D到直线l的距B、C、8.如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、离分别为a、b、c、d.
(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.
9.10.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC的中点M,连结DM和BM.
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,探索BM、DM的关系并给予证明;
(2)如果将图①中的△ADE绕点A逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.
B
A
D C
A
图②
C
图①
11.如图(1)在Rt△ABC中,∠BAC=90°,AB = AC,点D、E分别为线段BC上两动点,若∠DAE=45°.(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.ABC60,12.(北京市石景山中考模拟试题)(1)如图1,四边形ABCD中,ABCB,ADC120,请你 猜想线段DA、DC之和与线段BD的数量关系,并证明你的结论;
(2)如图2,四边形ABCD中,ABBC,ABC60,若点P为四边形ABCD内一点,且APD120,请你猜想线段PA、PD、PC之和与线段BD的数量关系,并证明你的结论.
第12题图1 图2 13.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC
相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的 数量关系?试证明你的猜想;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的 取值范围;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所
有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由..B
QC
A
P
D