第一篇:几何证明题练习
几何证明题练习
1.如图1,Rt△ABC中AB = AC,点D、E是线段AC上两动点,且AD = EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得5分。
①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形; ②点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2)。
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。
E
A
AM
AMD
D
F
E
F
A
F
K
C
AD
D
F
A
EEC
图 16
C
N
B
图 1
5B
MF
MF
图 17
D
C
图 17
图 16图 15
2.(1)如图13-1,操作:把正方形CGEF的对角线 CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M。
探究:线段MD、MF的关系,并加以证明。说明:(1)如果你经历反复探索,没有找到解决问题 A 的方法,请你把探索过程中的某种思路写出来(要求 至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得 7分;选取③完成证明得5分。
① DM的延长线交CE于点N,且AD=NE; A ② 将正方形CGEF绕点C逆时针旋转45°(如图13-2),其他条件不变;③在②的条件下且CF=2AD。(2):将正方形CGEF绕点C旋转任意角度后
(如图13-
3),其他条件不变。探究:线段MD、MF的关系,并加以证明。
D
F
E
图
13-2 D
图13-
33.如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx.MN的形状是否发生改变?若不变,①当点N在线段AD上时(如图2),△P求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.N
A A A D D D B
图1 A B
D F C
B
F C
B
M
图
2F C B
N
F
C
M 图3 D F C
(第3题)A
图5(备用)图4(备用)
4.如图4,△P1OA1,△P2A1A2,△P3A2A3……△PnAn-1An都是等腰直角三角形,点P1、P2、P3……
Pn都在函数y
(x > 0)的图象上,斜边OA1、A1A2、A2A3……An-1An都在x轴上。x
⑴求A1、A2点的坐标;
⑵猜想An点的坐标(直接写出结果即可)
图 1
55.如图5-1,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写
3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得5分。①画出将△ACM绕某一点顺时针旋转180°后的图形; ②∠BAC = 90°(如图17)
附加题:如图5-3,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系。
E
E
AM图 17
C
D
图 18
EC
D
A
D
M图 16
6.O点是△ABC所在平面内一动点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,如果DEFG能构成四边形.
(1)如图,当O点在△ABC内时,求证四边形DEFG是平行四边形.(2)当O点移动到△ABC外时,(1)的结论是否成立?画出图形并说明理由.(3)若四边形DEFG为矩形,O点所在位置应满足什么条件?试说明理由.
A
B
7.如图,已知三角形ABD为⊙O内接正三角形,C为弧BD上任意一点,已知AC=a,求S四边形ABCD。
D到直线l的距B、C、8.如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、离分别为a、b、c、d.
(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.
9.10.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC的中点M,连结DM和BM.
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,探索BM、DM的关系并给予证明;
(2)如果将图①中的△ADE绕点A逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.
B
A
D C
A
图②
C
图①
11.如图(1)在Rt△ABC中,∠BAC=90°,AB = AC,点D、E分别为线段BC上两动点,若∠DAE=45°.(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.ABC60,12.(北京市石景山中考模拟试题)(1)如图1,四边形ABCD中,ABCB,ADC120,请你 猜想线段DA、DC之和与线段BD的数量关系,并证明你的结论;
(2)如图2,四边形ABCD中,ABBC,ABC60,若点P为四边形ABCD内一点,且APD120,请你猜想线段PA、PD、PC之和与线段BD的数量关系,并证明你的结论.
第12题图1 图2 13.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC
相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的 数量关系?试证明你的猜想;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的 取值范围;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所
有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由..B
QC
A
P
D
第二篇:初一几何证明题练习
初一下学期几何证明题练习
1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6
解:∵ ∠B=∠C
∴ AB∥CD()又∵ AB∥EF()
D
∴
∥)∴ ∠BGF=∠C()
2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明
∠1=∠2,以下是证明过程,请填空:(8分)解:∵CD⊥AB,FG⊥AB
∴∠CDB=∠=90°(垂直定义)
∴_____//_____(∴∠2=∠3(又∵DE//BC
∴∠1=∠2()
3、已知:如图,∠1+∠2=180°,∴∠=∠3(试判断AB、CD有何位置关系?并说明理由。(8分)
4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠
DAC、∠C的度数吗?(7分)
A
EDC5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。
解:∵EF∥AD(已知)
∴∠2=(又∵∠1=∠2(已知)∴∠1=∠3(等量替换)∴AB∥(o))
∴∠BAC+=180(o)
∵∠BAC=70(已知)∴∠AGD=°
6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。
解:AB∥CD,理由如下:
过点E作∠BEF=∠B ∴AB∥EF()
∵∠BED=∠B+∠D(已知)且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF(∴AB∥CD(7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度数。(6分)
8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)))
9、已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______
(2)∵∠3=∠5(已知),∴AB∥______,(_______________________________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(________________________________)
10、已知,如图14,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°。(1)∵∠1=∠ABC(已知)
∴AD∥()(2)∵∠3=∠5(已知)
∴AB∥()(3)∵∠2=∠4(已知)
∴∥()(4)∵∠1=∠ADC(已知)
∴∥()(5)∵∠ABC+∠BCD=180°(已知)
∴∥()
11、如图15,(1)∵∠(已知)
∴AC∥ED()
(2)∵∠2=(已知)∴AC∥ED()(3)∵∠A+=180°(已知)∴AB∥FD()(4)∵AB∥(已知)∴∠2+∠AED=180°()
(5)∵AC∥(已知)∴∠C=∠1()B
A 图1
C
DD 图1
5F
B
C12、(4分)已知:如图15,AB⊥BC于B,CD⊥BC于C,∠1=∠2。求证:BE∥CF。
证明:∵AB⊥BC,CD⊥BC(已知)
∴∠1+∠3=90º,∠2+∠4=90º()∴∠1与∠3互余,∠2与∠4互余
又∵∠1=∠2()
∵∠3=∠4()∴BE∥CF()
13、(9分)已知:如图16,AB∥CD,∠1=∠2,求证:∠B=∠D。
图1
5证明:∵∠1=∠2(已知)
∴)∴∠BAD+∠B=)又∵AB∥CD(已知)
∴180º()∴∠B=∠D()
图1614、在空格内填上推理的理由
(1)如图,已知AB//DE,∠B=∠E,求证:BC//EF。
证明: AB//DE()
B
E
O
C F
∴ ∠B=()
又∠B=∠E()
∴=(等量代换)
∴//()
(2)已知,如图,∠1=120°,∠2=120°,求证:AB//CD。
证明:∠1=120°,∠2=120°()∴∠1=∠2()
又=()
∴∠1=∠3()
∴AB//CD()(3)已知,如图,AB//CD,BC//AD,∠3=∠4。求证:∠1=∠
2证明:AB//CD()
A3 C
D
A
B
∴=()
又 BC//AD()
∴=()
又∠3=∠4()
∴∠1=∠2()
15、(1)如图12,根据图形填空:直线a、b被直线c所截(即直线c与直线a、b都相交),已知a∥b,若
∠1=120°,则∠2的度数=__________,若∠1=3∠2,则∠1的度数=___________;如图13中,已知a∥b,且∠1+2∠2=1500,则∠1+∠2=_________0
c a
c
A
a
C
B G
E
图1
4F D
(2)如图14
2b
b
图1
3图12
∵∠B=∠______;∴AB∥CD(________________________); ∵∠DGF=______;∴CD∥EF(________________________); ∵AB∥EF;∴∠B+______=180°(________________________);(3)已知:如图15,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF。证明:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴BE∥CF()
(4)已知:如图16,AC⊥BC,垂足为C,∠BCD是∠B的余角。求证:∠ACD=∠B。证明:∵AC⊥BC(已知)∴∠ACB=90°()∴∠BCD是∠DCA的余角
∵∠BCD是∠B的余角(已知)∴∠ACD=∠B()(5)已知,如图17,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。
证明:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=()
∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()=∴∠3=()∴AD∥BE()
16、已知,如图,∠1=∠2,∠A=∠F。求证:∠C=∠D。证明:∵∠1=∠2(已知)
∠1=∠3()
∴∠2=∠()∴BD∥)∴∠4=∠C()又∵∠A=
∴AC∥)∴=∠D()∴∠C=∠D()
17、已知,如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC。
证明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=900,∠BFC=900()∴=()∴ED∥()∴=∠BCF()又∵∠1=∠2(已知)
∴∠2=()
∴FG∥BC()
图15
E C D
D
图16
A
D 4
C
图17
E
18.如图,已知AB//CD,AE//CF,求证:BAEDCF。
19.如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:
CBE
A
FD
AD//BC。
CM20.如图,已知AB//CD,B40,CN是BCE的平分线,CMCN,求B
A
D
F
B
C
E的度数。
A
B
N
M
C
D
E
第三篇:几何证明题
几何证明题
1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?
答题要求:请写出详细的证明过程,越详细越好.ED平行且等于1/2BC
取MN为BO,OC中点
则MN平行且等于1/2BC
得到ED平行且等于MN,则EDNM是平行四边形
则OD=OM,又M为BO中点,显然BO=2OD
一定过
假设BC中线不经过O点,而与BD交与O'
同理可证AO'=2O'G
再可由平行四边形定理得到O与O'重合所以必过O点
2.在直角梯形ABCD中,角B=角C=90度,AB=BC,M为BC边上一点。且角DMC=45度
求证:AD=AM
(1)几何证明题,首先画图
哎没图不好说啊
就空说吧你在纸上画图
先看已知条件,从已知条件得出直观的结论.因为M是BC边上一点,在三角形DMC中,角DMC=45度,角MCD=角C=90度,可以知道角MDC=45度,则三角形DMC是个等腰直角三角形,MC=CD.又AB=BC,M是BC边上一点,MC长度小于BC,所以知道这个直角梯形是以CD为上底,AB为下底,图形先画对
接下来求证
要证AD=AM,从已知条件中得知,MC=CD,则作一条辅助线就可得证
连接AC
∵AB=BC,角B=90度∴三角形ABC是个等腰直角三角形
∴角BCA=45度
∴角DCA=角BCD-角BCA=45度=角BCA
所以三角形AMC≌三角形ADC(MC=CD,角DCA=角BCA,AC=AC——边角边)
所以AD=AM得证
(2)
延长CD至F点~CF=AB连接AF~~因AB=BC~SO~ABCF是正方形~剩下的就容易了~只要证AFD~和ABM~是一样的3角形就OK了~~哎~快10年没碰几何了~那些专业点的词我都忘了~这题应该是这样吧~不知道有没错
回答者:fenixkingyu-试用期一级2007-8-719:23
上楼的有两处错误:
1.描述错误,ABCF不是四边形,ABFC才是.2.按照条件并不能证明ABFC是正方形.注意:要证明四边形是正方形,必须证明2个问题:
1.该四边形是矩形;2.该四边形是菱形。
(3)
把图画出来就好解了。我是按自己画的图解的,楼主画梯形下面是BA,上面是CD,然后在按我的文字添加辅助线就行了,度那个圆圈打不出来,我就没写了。
证明:连接MD,AM,连接AC并交MD于E
因为角DMC=45,角C=90
所以三角形MCD为等边直角三角形,既角CDM=45
又角B=90AB=BC
所以角CAB=45
由梯形上下两边平行,则内对角相加为180度
因角CAB角DMB=45+45=90
所以角EDA角DAE=90
既AC垂直于MD
在等腰直角三角形CDM中则有ME=ED,且AC垂直于MD
所以AE是三角形AMD的中垂线
既AD=AM(等腰三角形的法则)。
第四篇:几何证明题
几何证明题集(七年级下册)
姓名:_________班级:_______
一、互补”。
E
D
二、证明下列各题:
1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D
3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC
A1 O
4B
D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF
N
M
AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C
EF
AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE
FD
2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC
A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B
F
ED
AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A
EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F
A
G
BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F
E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A
CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA
ED
C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA
E
DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.
第五篇:初二(下)几何证明题练习(一)
初二(下)几何证明题练习
(一)1.正方形ABCD中,∠EAF=45°(1)探究BP、PQ、DQ关系;(2)探究DE、BP、AB关系;
(3)连接AC,探究AC、CM、CN的关系;(4)若EH∥BC,探究 EH、BF、DE的关系。
2.正方形ABCD,CF平分∠BCD外角,AE⊥EF。
(1)当点E在BC上,探究则AE与EF的数量关系。
(2)当点E在BC的延长线上时,(1)中的结论是否成立?说明理由;
(3)若把“正方形ABCD”改为“梯形ABCD中,∠D=∠BCD=90°,AD=CF= 1BC”,其它条件不变,探究AB,FC,EC间的数量关系。
3.正方形ABCD,∠FAE=90°,(1)若点E在线段BC上,探究CE,CF,AC间的数量关系。
(2)当点E在线段BC的延长线上,(1)中的结论是否成立?说明理由:
4.直角梯形ABCD,AD=AB,∠A=∠D=90°,FG⊥BE,MN∥AD,(1)若点E在线段AD上,探究AE,MF,NG之间的数量关系
(2)当点E在线段AD的延长线上,(1)中的结论是否成立?说明理由;
D
F
B B