几何证明题解题口诀

时间:2019-05-14 18:26:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《几何证明题解题口诀》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《几何证明题解题口诀》。

第一篇:几何证明题解题口诀

几何证明题解题口诀

(作者:河南省唐河县刘军义)

几何做题很容易,证明过程写详细。数学原理巧运用,前后贯通有条理!题目信息不放过,必与结果有联系。学科符号用恰当,统一规范又适宜: 因为所以单点对,大小符号尖相抵; 图形符号缩字同,角线名称字母替。证理恰切书规范,美观整洁又得体!解释:

1、题目信息:指题目中给的证明条件。

2、结果:指要证明的内容。

3、因为所以单点对:指“∵”和“∴”竖写时情况。

4、尖相抵:指“>”和“<”横写时的情况。

5、图形符号缩字同:指“□”“◇”“△”等代替图形名称时占一个汉字的位置。

——作于2014年8月17日

第二篇:几何证明题

几何证明题集(七年级下册)

姓名:_________班级:_______

一、互补”。

E

D

二、证明下列各题:

1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D

3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC

A1 O

4B

D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF

N

M

AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C

EF

AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE

FD

2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC

A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B

F

ED

AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A

EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F

A

G

BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F

E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A

CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA

ED

C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA

E

DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.

第三篇:如何提高初中生几何证明题的解题能力

如何提高初中生几何证明题的解题能力

【摘要】平面几何在初中数学中一直占据着很重要的位置。学习几何内容是他们从代数思维向几何思维转变的一个过渡时期,学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习上的效果有直接的影响。

【关键词】几何解题平面几何在初中数学中一直占据着很重要的位置。学习几何内容是他们从代数思维向几何思维转变的一个过渡时期,学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习上的效果有直接的影响。那么,如何提高初中生几何证明题的解题能力呢?针对这一情况,笔者认为应从以下几方面入手,提高学生的几何证明能力:1 夯实基础,灵活应用知识是提高学生几何证明的关键证明的每一步都是具体运用定理、定义进行推理。每一个复杂的证明过程都是由这样一些证明步骤组成的。光会背定义、定理的词句,不明白它的含义,不会用它去推理是不会证明的。有些同学在证明过程中逻辑混乱,证明过程总是欠缺条件或“自创”条件,这些情况是学生对定义、定理没有透彻理解,只知一、二的体现。在教学中,教师应特别注意对学生进行结合图形写出推理的训练,让学生明确在什么样的条件下能得到怎样的结果。这样才能较好的体现逻辑思维过程。认真读题2.1 读题要细心。有些学生一看到某一题前面部分有似曾相识的感觉,就直接写答案,这种还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取,我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

2.2 要记。这里的记有两层意思.第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示;第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

2.3 要引申。

期刊文章分类查询,尽在期刊图书馆难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。指导学生解题的方法3.1 分析逆推法。所谓分析逆推法应该就是“由果索因”地对所要证明的结论进行周密分析,逆向逐步找出结论成立需要具备的充分条件。在平面几何证明题中,这一解题思路是用得最多也是最常用的思路的。

3.2 综合顺推法。综合顺推法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“要证明的结果”。这一方法适用于比较简单的证明题目。

3.3 分综结合法。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析。初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路。

3.4 添加辅助元素。在几何学中用来帮助解答疑难几何图形问题是在原图基础之上另外所作的具有极大价值的直线或者线段。我们作辅助线的目的你要明确,就是将我们不常见的图形转化成我们学过的知识来解答和证明。这种方法需要一定的解题经验和掌握牢固的基础知识作支撑。注重证明过程的书写证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”在书写时都要符合公理、定理、推论或与已知条件相吻合,不能无中生有、胡说八道,要有根有据!证明过程书写完毕后,对证明过程的每一步进行检查,是非常重要的,是防止证明过程出现遗漏的关键。

培养学生的解题技巧,提高学生的解题速度让学生习惯用简单的图形来分析,它往往给人一种意想不到的效果。也就是说,解题最好用最简便的方法。当然对那些基础较好、学有余力的学生,应当增加一些一题多解、或者竞赛性质的练习。如:有哪些凸多边形可以铺满平面?讨论最短线的问题时,如何用几何方法证明光线通过最短路程反射等难度较高的思考题。学会反思,学会总结教会学生在解题结束后应经常进行反思、总结,对自己的解题方法、存在问题进行反思,多问些为什么,查找问题症结,并在今后的学习中加以克服;对于同类型的题目应加以归纳、对比,找出它们的联系,积累了经验,更好地服务于今后解题。

第四篇:浅谈几何证明题的解题方法与技巧

浅谈几何证明题的解题方法与技巧

作者:容茂和完成时间:2011年12月

【内容摘要】:针对学生解决几何证明题比较困难的情况,给学生分析研究几何证明题的解题方法与技巧,提高学生学习几何的兴趣,增强解决问题的信心。

【关键词】: 方法与技巧 ;注重基础 ; 善于归类 ;突破难关

在初中阶段,学生学习数学都会遇到两大难题:一是代数中的列方程解应用题;二是几何中的证明题。下面,笔者结合多年的教学经验和方法谈谈几何证明题的解题方法与技巧。

一、注重基础,善于归类。知识要靠平时的积累,只有当量变发生到一定程度才能产生质变。因此,在平时的学习中,特别是从七年级开始学习几何这门课时,就要做到每学习一个几何概念、定理、推论等都要分清它们的用途,并进行归类,为以后的学习打下基础。例如:在人教版七年级上册第四章《图形认识初步》中,在学习“线段的中点”、“角的平分线”、“等角的补角相等”、“等角的余角相等”等概念和性质时,就要分清:“线段的中点”可以用于证明两条线段相等;“角的平分线”、“等角的补角相等”及“等角的余角相等”等概念和性质都可以用来证明两个角相等。随着学习的不断深入,需要学习掌握的定理、性质就会更多。因此,学生必须做到边学习边归类,三年下来,整个初中阶段就会形成一个环环紧扣、条理清晰的几何知识系统。

二、明确几何证明题的类型。在知识的归类中,我们可以逐渐发现上述所学习的定理、性质、推论等的用途基本上都不外乎用来证明:两条线段相等、两个角相等、两条线段(或直线)平行、两个三角形全等(或相似),或者一个图形是某些特殊的图形(如平行四边形、菱形、矩形、正方形、等腰三角形、等边三角形、等腰梯形

等)。比较常见的是前面的四种证明题类型。因此,学生在碰到相应类型的证明题时,头脑中就要有相应的定理、性质、推论的出现,而对于用哪一个或几个定理去解决问题,取决于证明题的需要。

三、确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从“已知”入手,通过推理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回

1到“已知”;第三,从“已知”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰的思维过程。

四、要善于挖掘及利用题目图形中的隐藏条件。有的证明题中的已知条件有限,仅从已知条件出发未必能够找出正确的证明方法,但如果善于观察及利用图形中的隐藏条件,则可能很容易证明。例如

“对顶角相等”、“三角形的一个外角等于与它不相邻的两个内角的和”、“在同一个圆中,同一段弧所对的圆周角相等”等等就不需要在题目及图形中说明或指出,但它们也属于已知条件。

除了要掌握几何证明题的常用方法外,还要知道一些类型题的解题技巧。下面以证明“两条线段相等”这一类型为例,说明它的解题技巧。

(一)要证明相等的两条线段在同一条直线或线段上。

这种题型的证明方法都是从“求证”问题入手,通过分析,寻求

“证据”回到“已知”条件。具体的证明方法是通过线段的加或减得到,例如:人教版九年级上册第88页第8题,如图1,两个圆都是以

O为圆心,求证:AC=BD。分析:要求证相等的两条线段AC与BD

都在同一条线段AB上,而AB是大圆的弦交小圆于C、D两点;而题目中可用的条件不多,B

因此可以结合圆、弦考虑作辅助线:过圆心O作

线段OEAB于E,则构成垂径定理,于是有AE=BE,CE=DE,AECE=AC,BEDE=BD,所以AC=BD。图

1(二)要证明相等的两条线段在同一个三角形内。

这种题型的主要证明方法是考虑用“等角对等边”定理展开证

明。例如:如图2,在△ABC中,AE是△ABC的外角∠DAC的平分线,且AE∥BC,求证:AB=AC。

分析:如果要证明AB=AC 证明:∵AE平分∠DAC∴∠DAE=∠EACE∵AE∥BC∴∠DAE=∠B,∠EAC=∠C

∴∠B=∠C∴△ABC是等腰三角形BC

图2∴AB=AC

(三)要证明相等的两条线段分别在两个三角形内。

这种题型的主要证明方法是考虑根据“三角形全等”的定理展开

证明。在证明前,首先要把这两条线段分在两个三角形内,再去考虑证明这两个三角形全等。例如,人教版八年级下册第121页第8题,如图3,四边形ABCD是等腰梯形,点E、F在BC上,且BE=FC,连接DE,AF,求证:DE=AF。

分析:因为要证明线段DE、AF相等,显然DE、AF不在同一个三角形内,也不在同一直线或线段上,所以要考虑用“三角形全等”的中,定理去进行证明,AF在△ABF中,DE在△DCEAD 因此可能性围绕证明△ABF≌△DCE,然

后结合已知条件“等腰梯形”有

AB=DC,∠B=∠C,这时已有“一边一角”,但还有一个条件“BE=FC”未BEFC 用,于是有BE+EF=FC+EF,即BF=CE,于是构图3成“SAS”,因此△ABF≌△DCE。这题主要从

“已知”及“求证”两方面入手,通过分析找到中间“桥梁”:△ABF≌△DCE。

如果遇到一些证明题比较棘手,利用上述三种方法都不能证明

时,可以考虑用线段的“转移”,即把“求证”中的其中一条线段使之与图中的另一条线段相等,于是就使得“求证”中的另一条线段与这条线段或在同一条直线(或线段)上,或在同一个三角形内,或在两个三角形中,再用上述三种方法的其中一种去进行证明。这种证明方法属于借助中间“桥梁”(当然可能还有其它方法可证,这要由题目的已知条件和图形去确定解题方法)。

例如,如图4,在△ABC中,AF是BC边上的中线,D是AF上的一

点,BD的延长线交AC于点E,且∠BDF=∠CAF。求证:BD=AC。

分析:在图4中所要求证的两条线段虽然可以分在两个三角形

(BD在△ABD或△BDE,AC在△ACF或△ABC)中,但它们显然不全

等,这时可以考虑通过作辅助线,使“AC”与BD在同一个三角形中,再用定理“等角对等边”去进行证明。辅助线作法:延长AF到G,使FG=AF,连接BG,如图5。这时△ACF≌△GBF(SAS),于是可得BG=AC以及∠G=∠CAF,而已知∠BDF=∠CAF,所以∠BDF=∠G,故BD=BG,从而得到BD=AC。这个过程相当于把AC转移到一条和它相等的线段BG

上,使之在同一个三角形中,这就是线段的“转移”,这也是证明题中的一种常用技巧。

A

E

BFC

4A

E

BFC

G

5当然题目及题型是千变万化、错综复杂的,“求证”起来有难有易。但求解任何一道题目时,学生都需要有信心、耐心,相信自己一定能够解决问题。无论怎样难以“求证”的题目都离不开书本的基础知识。因此只有立足于书本知识,夯实基础,才能以不变应万变。在平时的学习训练中还要善于开拓思维,灵活变通,从不同的角度去思考问题,做到一题多解,这样才能突破几何证明题这一难关。

第五篇:几何证明题(难)

附加题:

1、已知:如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ

2、已知:如图,在△ABC中,已知AB=AC,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点。求证:△ABE∽△ECM;

3、已知:如图,四边形ABCD,M为BC边的中点.∠B=∠AMD=∠C 求证:AM=DM

DA

BCM

4、如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,找出图中的三对相似三角形,并给予证明。

D

C

E

FG

A BP

5、已知:如图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.

证明:把△ACF绕A点旋转90°使AC和AB重合;设F旋转之后的点是G

6、已知:如图,AB∥GH∥CD,求证:

111+= ABCDGH7、已知:点F是等边三角形ABC的边AC上一动点,(1)、如图,过点F的直线DE交线段AB于点D,交BC于点E,且CE=AD,求证:FD=FE A

DG F

CBE

(2)、如图,过点F的直线DE交BA的延长线于点D,交BC于点E,且CE=AD,求证:FD=FE

下载几何证明题解题口诀word格式文档
下载几何证明题解题口诀.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几何证明题训练

    仁家教育---您可以相信的品牌!仁家教育教案百川东到海,何时复西归?少壮不努力,老大徒伤悲。您的理解与支持是我们前进最大的动力! 1您的理解与支持是我们前进最大的动力!您的理......

    高中数学几何证明题

    新课标立体几何常考证明题汇总1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD......

    高中几何证明题

    高中几何证明题如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.求证,D1E//平面ACB1求证,平面D1B1E垂直平面DCB1证明:1):连接AD1,AD1²=AD²+DD1²=......

    初二几何证明题

    1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF. (1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论 A EB......

    几何证明题练习

    几何证明题练习1.如图1,Rt△ABC中AB = AC,点D、E是线段AC上两动点,且AD = EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。 试判断△DEF的形状,并加以证明。说明:......

    20131123几何证明题

    初一几何证明专题【学习目标】1.经历探索四边形是平行四边形的条件的过程,在学习中发展探究意识和有条理的表达能力【重点与难点】探索四边形是平行四边形的条件,分两个层次:1.......

    如何做几何证明题

    如何做几何证明题1、几何证明是平面几何中的一个重要问题,它对提高学生学生逻辑思维能力有着很大作用。几何证明有两种基本类型;一是平面图形的数量关系;二是有关平面图形的位置......

    初一几何证明题

    初一几何证明题1. 如图,AD∥BC,∠B=∠D,求证:AB∥CD。 A B D C2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB。 AD G / F3 BEC3. 如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP。 D P /C OB4......