第一篇:初二几何证明题
初二几何证明题
1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。M为AB中点,联结ME,MD、ED
求证:角EMD=2角DAC
证明:
∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA
∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA
∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC
2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D
求证:∠AHE=∠BGE
证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:
∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点
∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF
∵FM‖BG,∴∠MFE=∠BGF
∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题
这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受
如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC
证明:
BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)
==>BE=AB*BC/(BC+AC)
同理:CD=AC*BC/(BC+AB)
假设AB≠AC,不妨设AB>AC.....(*)
AB>AC==>BC+ACAC*BC
==>AB*AB/(BC+AC)>AC*BC/(BC+AB)
==>BE>CD
AB>AC==>∠ACB>∠ABC
∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/
2==>∠BEC>∠BDC
过B作CE平行线,过C作AB平行线,交于F,连DF
则BECF为平行四边形==>∠BFC=∠BEC>∠BDC.....(1)
BF=CE=BD==>∠BDF=∠BFD
CF=BE>CD==>∠CDF>∠CFD
==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC...(2)
(1)(2)矛盾,从而假设(*)不成立
所以AB=AC。
2、两地角的平分线相等,为等腰三角形
作三角形ABC,CD,BE为角C,B的角平分线,交于AB,BE.两平分线交点为O
连结DE,即DE平行BC,所以三角形DOC与COB相似。
有DO/DC=EO/EB,又EB=DC所以DO=EO,三角形COB为等腰
又角ODE=OCB=OED=OBC
又因为BE和DC是叫平分线,所以容易得出角C=角B(这个打出来太麻烦了),即ABC为等腰。
第二篇:初二几何证明题
1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论
A
E
B
第三篇:初二几何证明题
28.(本小题满分10分)
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。
21.(本小题满分9分)
如图,直线yxm与双曲线y
(1)求m及k的值; k相交于A(2,1)、B两点. xyxm,(2)不解关于x、y的方程组直接写出点B的坐标; ky,x
(3)直线y2x4m经过点B吗?请说明理由.
(第21题)
28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点C坐标是),当点D运动8.5秒时所在位置的坐标是,);
(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;
(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):
题28(a)图题28(b)图
(10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD.(10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A
出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG。
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P的运动路线的长。
23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.
CE
27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30º.
DF求 FC 的值.
图1 E C
E 图2 C
第四篇:几何证明题
几何证明题集(七年级下册)
姓名:_________班级:_______
一、互补”。
E
D
二、证明下列各题:
1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D
3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC
A1 O
4B
D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF
N
M
AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C
EF
AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE
FD
2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC
A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B
F
ED
AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A
EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F
A
G
BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F
E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A
CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA
ED
C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA
E
DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.
第五篇:初二(下)几何证明题练习(一)
初二(下)几何证明题练习
(一)1.正方形ABCD中,∠EAF=45°(1)探究BP、PQ、DQ关系;(2)探究DE、BP、AB关系;
(3)连接AC,探究AC、CM、CN的关系;(4)若EH∥BC,探究 EH、BF、DE的关系。
2.正方形ABCD,CF平分∠BCD外角,AE⊥EF。
(1)当点E在BC上,探究则AE与EF的数量关系。
(2)当点E在BC的延长线上时,(1)中的结论是否成立?说明理由;
(3)若把“正方形ABCD”改为“梯形ABCD中,∠D=∠BCD=90°,AD=CF= 1BC”,其它条件不变,探究AB,FC,EC间的数量关系。
3.正方形ABCD,∠FAE=90°,(1)若点E在线段BC上,探究CE,CF,AC间的数量关系。
(2)当点E在线段BC的延长线上,(1)中的结论是否成立?说明理由:
4.直角梯形ABCD,AD=AB,∠A=∠D=90°,FG⊥BE,MN∥AD,(1)若点E在线段AD上,探究AE,MF,NG之间的数量关系
(2)当点E在线段AD的延长线上,(1)中的结论是否成立?说明理由;
D
F
B B