第一篇:全等三角形证明题专项练习
全等三角形证明题专项练习1
姓名:
1、(1)全等三角形有哪些性质:____________________________________;
(2)两个三角形全等的判定方法有哪几种:_______________________________;
而直角三角形除了可以用上述方法判定全等之外,还可以使用__________;
(3)如图1,已知AC=DF,∠C=∠F,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:_____________,理由是:_____________;
这个条件也可以是:_____________,理由是:_____________;
这个条件还可以是:_____________,理由是:_____________;
D
B
B
F
C
(1)(2)
(4)如右图,已知AB=AD,若要使△ABC≌△ABD,那么还要需要一个条件,这个条件可以是:_____________,理由是:_____________;
这个条件也可以是:_____________,理由是:_____________;
2、如图,已知AB=AD,BC=DC,求证:∠B=∠D.
B
C
3.已知:如图,AB、CD相交于点O,AO=BO,CO=DO.求证:△AOC≌△BOD.
4.已知:如图,∠CAB=∠DBA,AC=BD.求证:①△CAB≌△DBA;②△AOC≌△BOD.5.已知:如图,AD=AE,点D、E在BC上,∠1=∠2,BD=CE.求证:△ABD≌△ACE.
A
2B
6.已知:如图,AC和BD相交于点O,OA=OC,DC∥AB,求证:OB=OD.
DC
A.cn
B
7.已知:M是AB的中点,MC=MD,∠1=∠2.求证:AC=BD.
D
A.cnM8、如图,AB=DF,AC=DE,BE=FC,求证:①ΔABC≌ΔDEF;②AB∥DF.C BEF9、如图,已知AD∥CB,AD=CB,AE=BF,求证:(1)△AFD≌△BEC;(2)DF∥CE.D
A
E
CB10、如图,∠BAD=∠EAC,AC=AD,AB=AE,求证:(1)△ABC≌△AED;(2)BD=EC.11、如图,AB=AC,AD=AE.AB、DC相交于点M,AC、BE相交于点N,∠DAB=∠EAC.
求证:DC=BE.12、如图,已知AB=AC,AD=AE,BE与CD相交于O,ΔABE与ΔACD全等吗?说明你的理由。
13、要测量河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定
出BF的垂线DE,使A、C、E在一条直线上,这时测得的DE的长就是AB的长.请说明理由
AF
全等三角形证明题专项练习
21、如图,AB⊥BC,AD⊥DC,且AD=AB,求证:BC=DC.B
C
2.已知:点 A、C、B、D在同一条直线,AC=BD,AM∥CN,BM∥DN. 求证:AM=CN,MB=ND。
M
N
.cn
3、如图、AB=AC、∠BAD=∠CAE、AC=AE,求证:BC=DEA
E
B
D
4.已知:D是△ABC的边AB上一点,DE交AC于点E,DE=FE,FC∥AB.求证:AE=CE.
5.已知:△ABC中,∠A是锐角,AB=AC,AC、AB边上的高分别为BE、CF.
求证:BE=CF.(画出图形并证明)
6、如图,AD是△ABC中BC边上的中线,BF⊥AF,CE⊥AD,求证:BF=CE.AE
B
C
.cn7、已知:如图,AB=CD,AD=BC.求证:AB∥DC,AD∥BC.D
.cn
8.已知:△ABC和△DBC的顶点A和D在BC的同旁,AB=DC,AC=DB,AC和DB相交于点O. 求证:(1)∠ABC=∠DCB;(2)OB=OC.
A
D
B
.cn
9.已知:如图,AB=AC,FB=FC.F是AD的延长线上一点.求证:DB=DC.
A
B
C.cn
10.已知:如图,AB=AC,EB=EC,AE的延长线交BC于D.求证:BD=CD.
11.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上
分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合.过角尺顶点P的射线
OP便是∠AOB的平分线.请说明理由。
12、已知:如图,在AB、AC上各取一点E、D,使AE=AD.连结BD、CE相交于点O,连结AO,∠1=∠2.求
证:① △AOE≌△AOD;②∠B=∠C.-2-
13、如图,已知AB⊥AC,BD⊥DC,且AB=DC,求证:①AC=DB;②AO=DO.A
D
.cn
14、已知AB⊥BC,AD⊥DC,且BC=DC,求证:∠ABD=∠ADB.A
B
15、如图,AD∥BC 且AD=BC,AE=CF,求证:①AB=DC;②EB=DF.E
D
全等三角形证明题综合练习
1.如图,∠B=∠C,AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,求证:BE=CF.
2.已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.C
D
A E
B
3.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C,D是垂足,连接CD,求证:(1)
∠ECD=∠EDC;(2)OD=OC;(3)OE是CD的中垂线.D
A
O
EC
B
4.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm
2,AB=20cm,AC=8cm,求DE的长。
D
5.如图,AB=AC,∠BAC=900,BD⊥AE于D,CE⊥AE于E,且BD>CE,求证:BD=EC+ED.6.如图,已知△ABC中,∠ACB=90°,AC=BC,D为AC上一点,延长BC到E,使得CE=CD.求证BD⊥AE
7.在△ABC中,∠ACB=90o,AC=BC,直线MN经过点C,且AD⊥MN于D, BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证: DE=AD+BE(2)当直线MN绕点C旋转到图2的位置时,求证: DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量 关系?请直接写出这个等量关系.9、(1)、如图4,已知:∠EAB=∠CAB,AE=AC,求证:∠E=∠C
(2)、如图5,已知:AE=AC,AD=AB,求证:∠E=∠C
(3)、如图4,已知:∠EAB=∠CAD,AE=AC,AD=AB,求证:∠E=∠C8、(1)、已知:如图1,DE∥AB,DE=AB,求证:△ADE≌△EBA,(2)、已知:如图2,DE∥AB,DE=AB,点C、F 在线段EA上,且EC=AF,求证:△FDE≌△CBA,(3)、已知:如图3,DE∥AB,DE=AB,点C、F 在线段EA上,且EC=AF,求证:△ADF≌△EBC
(图1)(图2)(图3)
(图4)
(图5)
(图6)
第二篇:全等三角形证明题
全等三角形证明题
1在直角坐标系中,有两个点A(2,4)B(-2,-4),(即A.B两点是
关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别
连接A,A1和B,B1后,证AA1O和BB1O两三角行全等!
2有一个正方形,分别连接它的对角,求其中的全等三角形?
3一个等腰三角形,做这个三角形的高线后,求其中的全等三角形?
4在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,求平移后的三角形和原料的三角形是否全等?
5有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形的直角边长为3和4.求证两三角形全等.(注:SAS)
6一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,求两个等边三角形全等.(注:SAS或SSS)
7.已知平行四边形ABCD,连接点AC,求三角形ABC和三
角形CDA全等.8等腰梯形ABCD对角相连求全等的三角形?
9在一个圆上,在圆内做两个三角形,圆心是公共的两个三角形的端点,且这两个角度数都为30度,求两三角形全等.(由
于圆半径相等,且两边夹角相等,所以SAS)
10.已知:三角形中AB=AC,求证:(1)∠B=∠C
11三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS)
12三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等
(ASA)
三角形ADF是直角三角形
所以角EAD=90度-角BDA
三角形ADB是直角三角形
所以角BAD=90度-角BDA
所以角EAD=角BAD
CE平行AB
所以同旁内角互补
所以角BAD+角ACE=180度
角BAD=90度
所以角ACE=90度
所以角BAD=角ACE
所以三角形BAD和三角形ACE中
角EAD=角BAD
角BAD=角ACE
AB=AC
由ASA
三角形BAD≌三角形ACE
所以AD=CE
因为D是AC中点,且AB=AC
所以AB=2AD
所以AB=2CE
只要证明直角三角形BAD全等ACE就可以了
AE垂直BD,所以角EAC=角DBA(为什么?因为角EAC+角BAE=90度,而角BAE+角DBA=90度,所以角EAC=角DBA)
然后因为CE平行AB,所以角ACE=90度
看三角形BAD和ACE
角EAC=角DBA
角BAD=角ACE=90
又因为AB=AC
所以两个直角三角形全等
所以AD=CE
又因为BD是中线,所以AC=2AD
所以AB=2CE
∵∠DEC=∠AEB(对顶角相等)
∠A=∠D
AE=ED
∴△ABE全等于△DEC(ASA)
∴EB=EC
∵∠DEC=50°
∴∠BEC=180°—∠EDC=180°—50°=130°
∵BE=EC
∴△BEC是等腰三角形
∴∠EBC=∠ECB=(180°—∠BEC)×(1/2)=25°
第三篇:全等三角形证明题
全等三角形证明题
1B
E
5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.
求证:BEDG.
A B
G F
AB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求
证:ACCD.
2.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.E B
F
C
A
D
C
6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.D
(1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.AD
′
E
C
B
3.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG 于 F.(1)求证:△ABF≌△DAE;(2)DEEFFB.
A
B
D
全等三角形证明题
21.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB. 求证:ADCF.
A
E
C
2.已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF.
4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.求证:△ABE≌△ACE.F G
C
B
E
A
C
B
C,AD,AD的延长线交3.把两个含有45°角的直角三角板如图放置,点D在BC上,连结 BE
BE于点F.(1)求证:△BEC≌△ADC;(2)说明:AF⊥BE.
全等三角形证明题
31.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.
D
C
B E C
F
4.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB∠DCE90,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)ADAEDE.
D
E
B
5.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全
A
等的过程.
C
3.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线
BC上,且PE=PB.求证:(1)PE=PD ;(2)PE⊥PD.的位置,连结EF、CF.求证:(1)△ABE≌△CBF;(2)FC⊥AC.D
D
E
6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE
交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
4.如图,正方形ABCD中,E是对角线AC或延长线上一点,把BE绕点B顺时针旋转90°到BF
DEF
AB C
E
B
C
F
第四篇:全等三角形证明题专项练习题
证明三角形全等专项练习试题
1.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:ABE≌△CAD;(2)求∠BFD的度数.
2.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.E
3.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段
BN与CN的数量关系,并证明你的结论.
B
N
4.在⊿ABC中,∠ACB的平分线交AB于E,过E点作BC的平行线交AC于F,交外角∠ACD的平分线于G。求证:F为EG的中点。
5.在⊿ABC中,∠B=60。,∠BAC和∠BCA的平分线AD和CF交于I点。试猜想:AF、CD、AC
三条线段之间有着怎样的数
量关系,并加以证明。
18.在直角⊿ABC中,CA=CB,BD为AC上的中线,作∠ADF=∠CDB,如图,连结CF交BD于E,求证:CF⊥BD。(提示:作AC的中线CO)
A
B
D
C
20.以⊿ABC的边AB、AC为边向形外作等边⊿ABM、⊿CAN,BN和CM交于一点P。试判断:∠APM、∠APN的大小关系,并加以证明。
21.在ABC中,AB=AC,DE∥BC.(1)试问ADE是否是等腰三角形,说明理由.(2)若M为DE上的点,且BM平分ABC,CM平分ACB,若ADE的周长20,BC=8.求ABC的周长.A
M
DE
CB
26.如图, 已知: 等腰Rt△OAB中,∠AOB=900, 等腰
Rt
△EOF中,∠EOF=900, 连结AE、BF.求证
:
(1)AE=BF;(2)AE⊥
BF.27.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF交AB于点E,连接EG。
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并证明。
28.如图:△ABC和△ADE是等边三角形.证明:BD=CE.A
B
G D
C
B
D
E
C
29.如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,3小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。
北
B
A
31.在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,请说明PB+PC与AB+AC的大小关系并写出证明过程。(10分)
32..一个三角形的两边长为3,5求第三边中线的取值范围?
33.等腰三角形的周长是10,腰长是x,则x的取值范围________。
1.在具有下列条件的两个三角形中,可以证明它们全等的是()。
(A)两个角分别对应相等,一边对应相等(B)两条边对应相等,且第三边上的高也相等(C)两条边对应相等,且其中一边的对角也相等(D)一边对应相等,且这边上的高也相等
2如图10,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,有下列说法: ①△EBD是等腰三角形,EB=ED ②折叠后∠ABE和∠CBD一定相等 ③折叠后得到的图形是轴对称图形 ④△EBA和△EDC一定是全等三角形,其中正确的有()
A.1个B.2个C.3个D.4个
B
C
D
3.下列两个三角形中,一定全等的是()。AD(A)有一个角是40°,腰相等的两个等腰三角形;
图10
(B)两个等边三角形;
B(C)有一个角是100°,底相等的两个等腰三角形;
(D)有一条边相等,有一个内角相等的两个等腰三角形。
4.△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图8中全等的三角形有()A.5对B.6对C.7对D.8对
5.等腰三角形的周长是10,腰长是x,则x的取值范围________。
6.试找出如图所示的每个正多边形的对称轴的条数,并填在下表格中.
D 图8
C
根据上表,请就一个正n边形对称轴的条数作一猜想.n边形有_______对称轴。
第五篇:2013全等三角形证明题专项练习题
证明三角形全等专项练习试题
1.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:ABE≌△CAD;(2)求∠BFD的度数. 2.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.3.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段
BN与CN的数量关系,并证明你的结论.
E
4.在⊿ABC中,∠ACB的平分线交AB于E,过E点作BC
ACD的平分线于G。求证:F为EG的中点。
5.在⊿ABC中,∠B=60。,∠BAC和∠BCA的B
平分线AD和CF交于I点。试猜想:AF、CD、AC 18.在直角⊿ABC中,CA=CB,BD为AC上的中线,作∠ADF=∠连结CF交BD于E,求证:
N
CF⊥BD。(提示:作AC的中线CO)
20.以⊿ABC的边AB、AC为边向形外作等边⊿ABM、⊿CAN,点P。试判断:∠APM、∠APN的大小关系,并加以证明。
21.在ABC中,AB=AC,DE∥BC.(1)试问ADE是否是等腰三角形,说明理由.BN和CM交于一
(2)若M为DE上的点,且BM平分ABC,CM平分ACB,若ADE的周长20,BC=8.求ABC的周长.A
M
DE
C B
26.如图, 已知: 等腰Rt△OAB中,∠AOB=900, 等腰Rt△EOF中,∠EOF=900, 连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.27.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF交AB于点E,连接EG。
A(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明。E 28.如图:△ABC和△ADE是等边三角形.证明:BD=CE.DC
B
D
29.如图,一艘轮船从点A向正北方向航行,每小时航行15P在轮船
G
BC的北偏西15°,3小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。
北
30.如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的E的异侧, BD⊥AE于D, CE⊥AE于E。B 一条直线, 且B、C在A、A
图(1)图(2)图(3)
(1)试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD (3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 直接写结论,可不说明理由。 31.在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,请说明PB+PC与AB+AC的大小关系并写出证明过程。(10分) 32..一个三角形的两边长为3,5求第三边中线的取值范围? B C D