第一篇:全等三角形证明题1
证明三角形全等专项练习试题
1.在具有下列条件的两个三角形中,可以证明它们全等的是()。
(A)两个角分别对应相等,一边对应相等(B)两条边对应相等,且第三边上的高也相等(C)两条边对应相等,且其中一边的对角也相等(D)一边对应相等,且这边上的高也相等
2如图10,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,有下列说法: ①△EBD是等腰三角形,EB=ED ②折叠后∠ABE和∠CBD一定相等 ③折叠后得到的图形是轴对称图形 ④△EBA和△EDC一定是全等三角形,其中正确的有()
A.1个B.2个C.3个D.4个 C
3.下列两个三角形中,一定全等的是()。AD(A)有一个角是40°,腰相等的两个等腰三角形;
图10
(B)两个等边三角形;
A B(C)有一个角是100°,底相等的两个等腰三角形;
(D)有一条边相等,有一个内角相等的两个等腰三角形。
4.△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图8
有()
A.5对B.6对C.7对D.8对
5.等腰三角形的周长是10,腰长是x,则x的取值范围________。
6.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:ABE≌△CAD;(2)求∠BFD的度数.
D 图8
C
7.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.E
8.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段
BN与CN的数量关系,并证明你的结论.
B
N
9.在⊿ABC中,∠B=60。,∠BAC和∠BCA的平分线AD和CF交于I点。试猜想:AF、CD、AC三条线段之间有着怎样的数量关系,并加以证明。
10.在ABC中,AB=AC,DE∥BC.(1)试问ADE是否是等腰三角形,说明理由.(2)若M为DE上的点,且BM平分ABC,CM平分ACB,若ADE的周长20,BC=8.求ABC的周长.A
M
DE
CB
11.如图, 已知: 等腰Rt△OAB中,∠AOB=900, 等腰Rt△EOF中,∠EOF=900, 连结AE、BF.求证:
(1)AE=BF;(2)AE⊥
BF.12.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于点F,交AC的平
行线BG于点G,DE⊥GF交AB于点E,连接EG。
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并证明。
13.如图:△ABC和△ADE是等边三角形.证明:BD=CE.B
G D
C
A
B
D
E
C
14.如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,3小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。
北
B
15.如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E。
A
图(1)图(2)图(3)(1)试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD (3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 直接写结论,可不说明理由。 全等三角形证明题 1在直角坐标系中,有两个点A(2,4)B(-2,-4),(即A.B两点是 关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别 连接A,A1和B,B1后,证AA1O和BB1O两三角行全等! 2有一个正方形,分别连接它的对角,求其中的全等三角形? 3一个等腰三角形,做这个三角形的高线后,求其中的全等三角形? 4在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,求平移后的三角形和原料的三角形是否全等? 5有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形的直角边长为3和4.求证两三角形全等.(注:SAS) 6一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,求两个等边三角形全等.(注:SAS或SSS) 7.已知平行四边形ABCD,连接点AC,求三角形ABC和三 角形CDA全等.8等腰梯形ABCD对角相连求全等的三角形? 9在一个圆上,在圆内做两个三角形,圆心是公共的两个三角形的端点,且这两个角度数都为30度,求两三角形全等.(由 于圆半径相等,且两边夹角相等,所以SAS) 10.已知:三角形中AB=AC,求证:(1)∠B=∠C 11三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS) 12三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等 (ASA) 三角形ADF是直角三角形 所以角EAD=90度-角BDA 三角形ADB是直角三角形 所以角BAD=90度-角BDA 所以角EAD=角BAD CE平行AB 所以同旁内角互补 所以角BAD+角ACE=180度 角BAD=90度 所以角ACE=90度 所以角BAD=角ACE 所以三角形BAD和三角形ACE中 角EAD=角BAD 角BAD=角ACE AB=AC 由ASA 三角形BAD≌三角形ACE 所以AD=CE 因为D是AC中点,且AB=AC 所以AB=2AD 所以AB=2CE 只要证明直角三角形BAD全等ACE就可以了 AE垂直BD,所以角EAC=角DBA(为什么?因为角EAC+角BAE=90度,而角BAE+角DBA=90度,所以角EAC=角DBA) 然后因为CE平行AB,所以角ACE=90度 看三角形BAD和ACE 角EAC=角DBA 角BAD=角ACE=90 又因为AB=AC 所以两个直角三角形全等 所以AD=CE 又因为BD是中线,所以AC=2AD 所以AB=2CE ∵∠DEC=∠AEB(对顶角相等) ∠A=∠D AE=ED ∴△ABE全等于△DEC(ASA) ∴EB=EC ∵∠DEC=50° ∴∠BEC=180°—∠EDC=180°—50°=130° ∵BE=EC ∴△BEC是等腰三角形 ∴∠EBC=∠ECB=(180°—∠BEC)×(1/2)=25° 全等三角形证明题 1B E 5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG. 求证:BEDG. A B G F AB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求 证:ACCD. 2.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.E B F C A D C 6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.D (1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.AD ′ E C B 3.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG 于 F.(1)求证:△ABF≌△DAE;(2)DEEFFB. A B D 全等三角形证明题 21.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB. 求证:ADCF. A E C 2.已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF. 4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.求证:△ABE≌△ACE.F G C B E A C B C,AD,AD的延长线交3.把两个含有45°角的直角三角板如图放置,点D在BC上,连结 BE BE于点F.(1)求证:△BEC≌△ADC;(2)说明:AF⊥BE. 全等三角形证明题 31.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE. D C B E C F 4.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB∠DCE90,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)ADAEDE. D E B 5.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全 A 等的过程. C 3.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线 BC上,且PE=PB.求证:(1)PE=PD ;(2)PE⊥PD.的位置,连结EF、CF.求证:(1)△ABE≌△CBF;(2)FC⊥AC.D D E 6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE 交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD. 4.如图,正方形ABCD中,E是对角线AC或延长线上一点,把BE绕点B顺时针旋转90°到BF DEF AB C E B C F 全等三角形证明题09 ⑴ 已知如图,△ABC中,∠A=90°,AB=AC,AO为BC上的中线. ① 求证:OA=OB=OC. ② 设点M在AC上移动,点N在AB上移动,连结OM、ON、MN,当AM=BN时,试判断△MON的形状并予以证明. M A B O C A B O C N ⑵ 已知如图,△ABC中,∠C=90°,AC=BC,D为AB的中点.一直角三角板的直角顶点绕D旋转,其两条直角边分别交射线AC于G,交射线CB于H.试找出图中除AC=BC,AD=CD=BD以外所有相等的线段并予以证明. ⑶ 已知如图,△ABC中,BD⊥AC于D,CE⊥AB于E. ① 在BD上截取BF=AC,在CE的延长线上截取CG=AB,连结AG、AF、GF,试判断△AFG的形状并予以证明. B F C D E G A C G H B D A ② 分别在BD、CE的反向延长线上截取BF=AC,CG=AB,连结AG、AF、GF,①中的结论还成立吗?若成立,请予证明;若不成立,请说明理由. G B F C E D A 全等三角形证明题09 ⑷ 探求规律. ① 如图,等边三角形ABC中,BM、CN相交于O,∠BON=60°,求证:BM=CN. ② 如图,正方形ABCD中,BM、CN相交于O,∠BON=90°,求证:BM=CN. ③ 如图,正五边形ABCDE中,BM、CN相交于O,∠BON=108°,求证:BM=CN. ④ 如图,正六边形ABCDEF中,BM、CN相交于O,∠BON=108°,求证:BM=CN. ⑤ 正n边形ABCDEFGH……中,BM、CN相交于O,当∠BON等于多少度时,BM=CN.请写出你的猜测(不需证明). ⑥ 如图,五边形ABCDE中,BM、CN相交于O,∠BON=108°,BM=CN仍成立吗?若成立,请予证明;若不成立,请说明理由. E N A O B C D M B A F N E M O D B A O C E N D M B O C A N D M B N M O C A C 2 初二下期三角形全等证明题练习 一、填空题 1.如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=DE,则∠ACE=____.B C 第1题 ① ② ③ BC (第2题)(第3题) 2.如图,∠A=∠D,再添加条件___ 或条件_____,就可以用____定理来判定△ABC≌△DCB.3.如图,某人不小心把一块三角形的玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是带去碎片中的第______块。 D A P B C A ' B E C BE (第4题)(第5题)(第6题) 4.已知如图,F在正方形ABCD的边BC边上,E在AB的延长线上,FB=EB,AF交CE于G,则∠AGC的度数是______.5.如图,BC是Rt△ABC的斜边,P是△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长等于______.5cm6.如图,已知在△ABC中,A90,ABAC,CD平分ACB,DEBC于E,若BC 1则△DEB的周长为cm.,7.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三 角形与△ABC全等,这样的三角形最多可以画出_____个. DA C D FC D E AB B (第7题)(第8题)(第9题) 二、选择题(每小题3分,共30分) 8.下列说法不正确的是().A.全等三角形周长相等B.全等三角形能够完全重合C.形状相同的图形就是全等图形D.全等图形的形状和大小都相同 9.如图,已知△ABC ≌△DEF,且AB=4,BC=5,AC=6,则DE的长为().A.4B.5C.6D.不能确定 10.如图,若△OAD≌△OBC,且∠0=65°,∠C=20°,则∠OAD等于().A.85°B.95°C.65°D.105° 11.如图,已知∠1=∠2,要使△ABC≌△ADE,还需条件().A.AB=AD,BC=DEB.BC=DE,AC=AE C.∠B=∠D,∠C=∠ED.AC=AE,AB=AD A EEBCDBFCBDC 12.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF;②∠FAB=∠EAB;③EF =BC;④∠EAB=∠FAC,其中正确结论的个数是().A.1个B.2个C.3个D.4个 13.如图,已知△ABC中,AB=AC,它的周长为24,又AD⊥BC于D,△ABD的周长为20,则AD的长为().A.6B.8C.10D.1 2三、证明题 1.已知:如图点C是AB的中点,CD∥BE,且CD=BE.求证:∠D=∠E.A CD B 2.已知:E、F是AB上的两点,AE=BF,又AC∥DB,且AC=DB.求证:CF=DE。 C F AE如图,已知△ABC和△DEC都是等边三角形,∠ACB=∠DCE=60°,B、C、E在同一直线上,连结BD和AE.求证:BD=AE.A B 4.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE。求证:⑴AE=CF;⑵AE∥CF;⑶∠AFE=∠CEF。 AB E 5.已知:如图∠B=∠E=90°AC=DFFB=EC,则AB=DE.请说明理由。 6.如图,已知:在等边三角形ABC中,D、E分别在AB和AC上,且AD=CE,BE和CD相交于点P。 (1)说明△AD≌△CEB (2)求:∠BPC 的度数.7.已知:如图,⊿ABC中,∠BAC=900,AB=AC,AE是过点A的一条 直线,且BC在AE的异侧,BD⊥AE于D,CE⊥AE于E 1)求证:BD=DE+CE; 2)若AE直线绕点A旋转到图2)的位置时,BD<CE,其余条件不变,问BD与DE、CE的关 系如何?并证明; 3)若直线AE绕点A旋转到图3)的位置时,BD>CE,其余条件不变,问BD与DE、CE的关 系如何?请直接写出结果,不需要证明; 4)归纳1)、2)、3),用简明的语言表达BD与DE、CE的关系.A BE 图1)CDAE图2)CB图3)C第二篇:全等三角形证明题
第三篇:全等三角形证明题
第四篇:全等三角形证明题09
第五篇:初一全等三角形证明题