七年级下册数学全等三角形的经典证明题

时间:2019-05-14 11:43:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级下册数学全等三角形的经典证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级下册数学全等三角形的经典证明题》。

第一篇:七年级下册数学全等三角形的经典证明题

七年级下册数学全等三角形的经典证明题

姓名:

学号:

四川省成都市大邑县韩场镇学校:龚永彬

1、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.

2、如图,已知: AD是BC上的中线 ,且DF=DE.

求证:BE∥CF.

3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF. 求证:AC=EF.

4、如图,在ΔABC中,AC=AB,AD是BC边上的中线。求证:AD⊥BC,BEAGFDCABDCE5、如图,已知AB=DE,BC=EF,AF=DC。求证:∠EFD=∠BCA

AD CF

B

6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。

A(1)∠DBH=∠DAC;

(2)ΔBDH≌ΔADC。

E H

BDC7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。

10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系.

ADM

PN

C

B

11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.

F

A E

D、BC

12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.A

D

FC B

E

13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,ADE⊥DF,交AB于点E,连结EG、EF.求证:EG=EF;

F请你判断BE+CF与EF的大小关系,并说明理由。E

BCD

14、如图①,E、F分别为线段AC上的两个动点,且G DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

i.求证:MB=MD,ME=MF

ii.当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

15、如图(1),(1)已知△ABC中, ∠BAC=90, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD

(3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.0

第二篇:七年级下册数学全等三角形的经典证明题

七年级下册数学全等三角形的经典证明题

1、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.

2、如图,已知: AD是BC上的中线 ,且DF=DE.

求证:BE∥CF.

3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF. 求证:AC=EF.

4、如图,在ΔABC中,AC=AB,AD是BC边上的中线。求证:AD⊥BC,5、如图,已知AB=DE,BC=EF,AF=DC。求证:∠EFD=∠BCA

6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)ΔBDH≌ΔADC。

BAFCDEBEDCAGFABDCAHEBDC7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。

10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系.

11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,FAEDAMPCDNBBD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.

求证:BD=2CE.

12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.BCADBFCE13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.求证:EG=EF;请你判断BE+CF与EF的大小关系,并说明理由。

GBEDAFC

14、如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

i.ii.求证:MB=MD,ME=MF

当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

15、如图(1),(1)已知△ABC中, ∠BAC=90, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD

(3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.0

第三篇:七年级下册数学全等三角形的经典证明题

七年级下册数学全等三角形的经典证明题 7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。

10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系.ADM

N

C

11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.F

A E D、BC

12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.B

13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,ADE⊥DF,交AB于点E,连结EG、EF.求证:EG=EF;F请你判断BE+CF与EF的大小关系,并说明理由。

BCD

G

14、如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

i.求证:MB=MD,ME=MF

ii.当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否

成立?若成立请给予证明;若不成立请说明理由.

第四篇:七年级下册数学全等三角形的经典证明题

1、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.

2、如图,已知: AD是BC上的中线 ,且DF=DE.

求证:BE∥CF.

3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF求证:AC=EF.

4、如图,在ΔABC中,AC=AB,AD是BC边上的中线。

求证:AD⊥BC,. FAGBEDCA

B

DC

5、如图,已知AB=DE,BC=EF,AF=DC。

求证:∠EFD=∠BCA

A

6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。

(1)∠DBH=∠DAC;

(2)ΔBDH≌ΔADC。

FDE

DC

7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。

10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系.

ADM

C

B

11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.

F

A

E

CB、12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.B

13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的A平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.F求证:EG=EF;请你判断BE+CF与EF的大小关系,并说明理由。

BCD

G

14、如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

i.求证:MB=MD,ME=MF

ii.当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;

若不成立请说明理由.,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下:(10分)

∵∠1 =∠2(已知),且∠1 =∠4()

∴∠2 =∠4(等量代换)

∴CE∥BF()

∴∠=∠3()又∵∠B =∠C(已知)∴∠3 =∠B(等量代换)∴AB∥CD

A

1E

B

C

()2D

15、如图(1),(1)已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E

试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD

(3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.

第五篇:2014七年级三角形全等证明题

第五章全等三角形 B

一、选择题(每题3分,共18分)

1.下列命题①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角.它

们的逆命题是真命题的个数是()

A.1个B.2个C.3个D.4个

2.命题“到线段两端距离相等的点在这条线段的垂直平分线上”的结论是()

(A)在这条线段的垂直平分线上(B)线段的垂直平分线上有个点

(C)这点在这条线段的垂直平分线上(D)这点在垂直平分线上

3.下列命题中,真命题是()

A.相等的角是直角B.不相交的两条线段平行

C.两直线平行,同位角互补D.经过两点有具只有一条直线

.4。命题:①对顶角相等;②平面内垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相

等.其中假命题有()

A、1个B、2个C、3个D、4个

5.只用无刻度的直尺就能作出的图形是()

A.延长线段AB至C,使BC=ABB.过直线L上一点A作L的垂线

C.作已知角的平分线D.从点O再经过点P作射线OP

6.用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS

B.ASAC.AASD.SSS

三、选择题(每题4分,共20分)

12.如图7所示,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()

A.2B.3C.5D.2.5F B 图7 E 图8

13.如图8,∠1=∠2,BC=EF,欲证△ABC≌△DEF,则须补充一个条件是()

10,△BCD

A.8B.6C.4D.2

四、填空题(每题3分,共24分)

17.如图1,根据SAS,如果AB=AC,()=(),即可判定ΔABD≌ΔACE.A

E

D

B

E 图

2A

D

B

1E 图

318.如图2,BD垂直平分线段AC,AE⊥BC,垂足为E,交BD于P点,PE=3cm,则P点到直线AB的距离是___.19.如图3,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若

AB=10,则△BDE的周长等于____.20.如图4,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为(),BD的对应边为()21.如图5,AD=AE,∠1=∠2,BD=CE,则有△ABD≌(),理由是(),△ABE≌△

(),理由是()。.图

5ED

图(8)6

FC

22.如图6,AD⊥BC,DE⊥AB,DF⊥AC,D、E、F是垂足,BD=CD,那么图中的全等三角形有_______.23.如图,直线l过正方形ABCD的顶点B,点

A、C到

直线l的距离分别是1和2,则正方形的边长为().五、解答题(共24分)

25.如图,在□ABCD中,E、F分别是边BC和请你补充一个条件,使ABE

AD上的点.≌CDF,并给予证明.(9分)

29.如图,在△ABC中,∠B和∠C的平分线相交于点O,且OB=OC,请说明AB=AC的理由。(8分)

30.如右图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.(8分)

31.如图4,在Rt△ABC中,AB的垂直平分线交BC边于点E.若BE=2,∠B =22.5°求:AE、∠AEC、AC的长.(10分)

C

A

C

E

B

图4

下载七年级下册数学全等三角形的经典证明题word格式文档
下载七年级下册数学全等三角形的经典证明题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级下册数学全等三角形的经典证明题1

    七年级下册数学全等三角形的经典证明题 1.已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。2.如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述......

    全等三角形证明题

    全等三角形证明题1在直角坐标系中,有两个点A(2,4)B(-2,-4),(即A.B两点是关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别连接A,A1和B,B1后,证AA1O和BB1O两三角行......

    全等三角形证明题

    全等三角形证明题1BE5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.求证:BEDG.A BG FAB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求证:ACCD.2.如图,在正方形ABCD中,C......

    全等三角形证明题精选

    6. 已知:如图,△ABC和△A'B'C'中,∠BAC=∠B'A'C',∠B=∠B',AD、A'D'分别是∠BAC、∠B'A'C'的平分线,且AD=A'D'。求证:△ABC≌△A’B’C’。A' A2D' D B C B'7.已知:如图,AB=CD,AD=BC,O是AC中点,OE⊥AB......

    八年级数学全等三角形证明题

    中考网 第十三章全等三角形测试卷(测试时间:90分钟总分:100分)班级姓名得分一、选择题(本大题共10题;每小题2分,共20分)1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC......

    人教版七年级数学下册三角形证明题

    超冰辅导江畔花园B12栋702 陈老师 ***2012-04-031、如图,∠B= 42°,∠A + 10°=∠1,∠ACD= 64°,试证明:AB∥CD 。2、如图5,AB∥CD,∠BAE=∠DCE=45°,求∠E。(7分)_C图5_D3、,......

    七年级数学 三角形 证明题

     三角形与平行线相交线的套用1.已知:四边形ABCD中, AC、BD交于O点, AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.求证:AD=BC 多次证明三角形全等得出角或边相等2.(1)已知:如图,在AB、A......

    全等三角形证明题1

    证明三角形全等专项练习试题1.在具有下列条件的两个三角形中,可以证明它们全等的是( )。(A)两个角分别对应相等,一边对应相等 (B)两条边对应相等,且第三边上的高也相等 (C)两条边对应相......