八年级全等三角形经典证明题

时间:2019-05-15 14:10:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级全等三角形经典证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级全等三角形经典证明题》。

第一篇:八年级全等三角形经典证明题

三角形全等的判定专题训练题

1、如图(1):AD⊥BC,垂足为D,BD=CD。求证:△ABD≌△ACD。

2、如图(2):AC∥EF,AC=EF,AE=BD。求证:△ABC≌△EDF。

3、如图(3):DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。

4、如图(4):AB=AC,AD=AE,AB⊥AC,AD⊥AE。求证:(1)∠B=∠C,(2)BD=CE5、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。求证:AC⊥CE

DEAFC AEFCD CA(图4)E

A D(图2)BA(图3)BB(图5)D BBC(图1)D6、如图(6):CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上。求证:(1)AF=EG,(2)BF∥DG。

7、如图(7):AC⊥BC,BM平分∠ABC且交AC于点M、N是AB的中点且BN=BC。

求证:(1)MN平分∠AMB,(2)∠A=∠CBM。

8.如图(8):A、B、C、D四点在同一直线上,AC=DB,BE∥CF,AE∥DF。求证:△ABE≌△DCF。

9、如图(9)AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。

10、如图(10)∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。求证:AB=AC。

A

FEB FDEFNC ABMCD(图6)C8)CAMGB(图7)9)BBC(图10)EE11、如图(11)在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点。求证:PA=PD。

12、如图(12)AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF求证:EB∥CF。

13、如图(13)△ABC≌△EDC。求证:BE=AD。

14、如图(14)在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥

CB交CF的延长线于点D。(1)求证:AE=CD,(2)若BD=5㎝,求AC的长。

115、如图15△

ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD=AB,延长AC到E,使CE=AC。求证:

2△ABC≌△AED。

BAF E

EA2 DC P

F ADBCBDD34(图13)CB(图14)EA(图15)11)E

16、如图(16)AD∥BC,AD=BC,AE=CF。求证:(1)DE=DF,(2)AB∥CD。

17、如图:在△ABC中,AD⊥BC于D,AD=BD,CD=DE,E是AD上一点,连结BE并延长交AC于点F。求证:

(1)BE=AC,(2)BF⊥AC。

A18、如图:在△ABC中,∠ACB=90°,AC=BC,D是AB上一点,AE⊥GD于E,BF⊥CD交CD的延长线于F。求证:AE=EF+BF。

19、如图:AB=DC,BE=DF,AF=DE。求证:△ABE≌△DCF。

C20、如图;AB=AC,BF=CF。求证:∠B=∠C。DAAC DCE EDEFF

FDAB ABC(图19)BBCA(图18)B(图16)DF(图17)

21、如图:AC=DF,AD=BE,BC=EF。求证:∠C=∠F。

22、如图:AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。求证:BE⊥AC。

23、如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足为C,D。求证:(1)OC=OD,(2)DF=CF。

24、如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F。求证:AF平分∠BAC。

25、如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何。

AAA AGCA ED FEDE OFBC FBFDEBBCCD26、如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证: ①△ADC≌△CEB;②DE=AD+BE;

(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;

(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.M CM C

NB A BDN 图11-93-2 图11-93-1图11-93-3

图11-93

27.如图,Rt△BDA中,∠BDA=90°,BD=AD,Rt△

HDC,∠HDC=90°,HD=CD,请你猜想线段BH与AC的数量关系,并写出证明过程。

解:猜想:.证明:

C

第二篇:八年级数学全等三角形证明题

中考网

第十三章全等三角形测试卷

(测试时间:90分钟总分:100分)

班级姓名得分

一、选择题(本大题共10题;每小题2分,共20分)

1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC=DF;

③BC=DF;④AB=EF中,能判定它们全等的有()

A.①②B.①③C.②③D.③④

2. 下列说法正确的是()

A.面积相等的两个三角形全等

B.周长相等的两个三角形全等

C.三个角对应相等的两个三角形全等

D.能够完全重合的两个三角形全等

3. 下列数据能确定形状和大小的是()

A.AB=4,BC=5,∠C=60°B.AB=6,∠C=60°,∠B=70°

C.AB=4,BC=5,CA=10D.∠C=60°,∠B=70°,∠A=50°

4. 在△ABC和△DEF中,∠A=∠D,AB = DE,添加下列哪一个条件,依然不能证明△

ABC≌△DEF()

A.AC = DFB.BC = EFC.∠B=∠ED.∠C=∠F

5. OP是∠AOB的平分线,则下列说法正确的是()

A.射线OP上的点与OA,OB上任意一点的距离相等

B.射线OP上的点与边OA,OB的距离相等

C.射线OP上的点与OA上各点的距离相等

D.射线OP上的点与OB上各点的距离相等 D 6. 如图,∠1=∠2,∠E=∠A,EC=DA,则△ABD≌△EBC

时,运用的判定定理是()A.SSS

C B.ASA B C.AAS

(第6题)D.SAS

7. 如图,若线段AB,CD交于点O,且AB、CD互相平分,则下列结论错误的是()D A.AD=BC

B.∠C=∠D

C.AD∥BC

D.OB=OC

8. 如图,AE⊥BD于E,CF⊥BD于F,AB = CD,AE = CF,则图中全等三角形共有()

A.1对

B.2对

C.3对

D.4对 B(第7题)(第8题)D中考网

9. 如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△

ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的()

A.只有①

B.只有②

C.只有③

D.有①和②和③

B 10.如图,DE⊥BC,BE=EC,且AB=5,AC=8,(第9题)则△ABD的周长为()

A.

21B.18C.1

3C E D.9

(第10题)

二、填空题(本大题共6小题;每小题2分,共12分)

11.如图,除公共边AB外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC与△ABD全等:

(1),(ASA);(2),∠3=∠4(AAS). 12.如图,AD是△ABC的中线,延长AD到E,使DE=AD,连结BE,则有

△ACD≌△。

13.如图,△ABC≌△ADE,此时∠.

A CBC B ED A(第11题)

(第13题)(第12题)

14.如图,AB⊥AC,垂足为A,CD⊥AC,垂足为C,DE⊥BC,且AB=CE,若BC=5cm,则DE的长为cm. 15.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.B

C C A C E(第15题)(第14题)(第16题)

16.如图,在△ABD和△ACE中,有下列论断:①AB=AC;②AD=AE;③∠B=∠C;④

BD=CE.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题:。

三、解答题(本大题5小题;共68分)17.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB.∠MON=50°,∠OPC=30°.

求∠PCA的度数.

A

B

18.已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分

线,请你先作△ODB的角平分线DF(保留痕迹)再证明CE=DF.

19.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证BM=CN.

MB

D

N

20.已知:如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.(1)求证BG=CF;

(2)试猜想BE+CF与EF的大小关系,并加以证明.

21.如图,图(1)中等腰△ABC与等腰△DEC共点于C,且∠BCA=∠ECD,连结BE,AD,若BC=AC,EC=DC.求证BE=AD;若将等腰△EDC绕点C旋转至图(2)(3)(4)情况时,其余条件不变,BE与AD还相等吗?为什么?

A

DB

A

A

E

E

B

(1)

D

DC

B

D

(2)(3)

(4)

八年级(上)《全等三角形》试卷讲评课教案

九华初级中学李海燕

教学目标:

1.通过讲评,进一步巩固全等三角形的相关知识点。

2.通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。教学重点:

第16,19,20题的错因剖析与矫正。教学过程:

一、考试情况分析:

班级均分:82.1 分最高分:100 分 100分的同学,全班公示,鼓掌祝贺。分发试卷。

二、学生小组总结试卷填空和选择两块解题中错误原因和解题感受,看看哪些小组总结得比较好。

学生用投影展示自己的所思所想。

三、重点评讲解答题的19、20题

1、学生小组交流

2、学生据黑板图形讲解

3、教师点评

四、学生自我完善考卷

五、总结课堂,教师质疑

六、学生课堂训练

教案说明:

本张试卷学生考试情况较好,典型错误不多,且书写态度端正,思维过程表达清晰,可以看出学生对全等三角形的性质、判定掌握到位,如17、19有的学生能灵活运用角平分线性质及垂直平分线性质进行解答,方法比较简便。针对考试情况,我在进行教学设计时让学生发现自己在解题中的失误或错误,重点评讲了试题中的3、19、20等题。本课主要采用由学生说题的方法进行评讲,心理学研究表明,人在学习活动过程中,听懂不一定做的出,语

言表述则是思维活动的最高境界,语言更能训练思维的逻辑性和严密性。学生对解题过程或者思维过程口头能表达清楚才是真的理解这道题。总之,“学生说题”能转变学生的学习方式,建设开放而有活力的课堂,符合有效课堂的特征,是高参与的课堂、高认知的课堂、高情意的课堂。课堂练习是针对学生在考卷中表现出的薄弱之处设计的,在学生对考卷进行评讲后进行练习,能有效帮助学生进一步掌握解题方法。

课堂针对性练习

班级姓名组别

1、如图,在△AEB和△AFC中,有下列论断:①∠EAC=∠FAB;②AB=AC;③BE=CF;④AE=AF.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题.2、(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于

D,CE⊥AF于E.求证:DE=BD-EC

(2)对于(1)中的条件改为:直线AF在△ABC形外,与BC的延长线相交于F,其他条件不变,上述结论仍成立吗?(请画出图形)若成立,请证明;若不成立,请写出正确的等式,并证明.

第三篇:全等三角形证明题

全等三角形证明题

1在直角坐标系中,有两个点A(2,4)B(-2,-4),(即A.B两点是

关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别

连接A,A1和B,B1后,证AA1O和BB1O两三角行全等!

2有一个正方形,分别连接它的对角,求其中的全等三角形?

3一个等腰三角形,做这个三角形的高线后,求其中的全等三角形?

4在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,求平移后的三角形和原料的三角形是否全等?

5有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形的直角边长为3和4.求证两三角形全等.(注:SAS)

6一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,求两个等边三角形全等.(注:SAS或SSS)

7.已知平行四边形ABCD,连接点AC,求三角形ABC和三

角形CDA全等.8等腰梯形ABCD对角相连求全等的三角形?

9在一个圆上,在圆内做两个三角形,圆心是公共的两个三角形的端点,且这两个角度数都为30度,求两三角形全等.(由

于圆半径相等,且两边夹角相等,所以SAS)

10.已知:三角形中AB=AC,求证:(1)∠B=∠C

11三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS)

12三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等

(ASA)

三角形ADF是直角三角形

所以角EAD=90度-角BDA

三角形ADB是直角三角形

所以角BAD=90度-角BDA

所以角EAD=角BAD

CE平行AB

所以同旁内角互补

所以角BAD+角ACE=180度

角BAD=90度

所以角ACE=90度

所以角BAD=角ACE

所以三角形BAD和三角形ACE中

角EAD=角BAD

角BAD=角ACE

AB=AC

由ASA

三角形BAD≌三角形ACE

所以AD=CE

因为D是AC中点,且AB=AC

所以AB=2AD

所以AB=2CE

只要证明直角三角形BAD全等ACE就可以了

AE垂直BD,所以角EAC=角DBA(为什么?因为角EAC+角BAE=90度,而角BAE+角DBA=90度,所以角EAC=角DBA)

然后因为CE平行AB,所以角ACE=90度

看三角形BAD和ACE

角EAC=角DBA

角BAD=角ACE=90

又因为AB=AC

所以两个直角三角形全等

所以AD=CE

又因为BD是中线,所以AC=2AD

所以AB=2CE

∵∠DEC=∠AEB(对顶角相等)

∠A=∠D

AE=ED

∴△ABE全等于△DEC(ASA)

∴EB=EC

∵∠DEC=50°

∴∠BEC=180°—∠EDC=180°—50°=130°

∵BE=EC

∴△BEC是等腰三角形

∴∠EBC=∠ECB=(180°—∠BEC)×(1/2)=25°

第四篇:全等三角形证明题

全等三角形证明题

1B

E

5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.

求证:BEDG.

A B

G F

AB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求

证:ACCD.

2.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.E B

F

C

A

D

C

6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.D

(1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.AD

E

C

B

3.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG 于 F.(1)求证:△ABF≌△DAE;(2)DEEFFB.

A

B

D

全等三角形证明题

21.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB. 求证:ADCF.

A

E

C

2.已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF.

4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.求证:△ABE≌△ACE.F G

C

B

E

A

C

B

C,AD,AD的延长线交3.把两个含有45°角的直角三角板如图放置,点D在BC上,连结 BE

BE于点F.(1)求证:△BEC≌△ADC;(2)说明:AF⊥BE.

全等三角形证明题

31.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.

D

C

B E C

F

4.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB∠DCE90,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)ADAEDE.

D

E

B

5.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全

A

等的过程.

C

3.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线

BC上,且PE=PB.求证:(1)PE=PD ;(2)PE⊥PD.的位置,连结EF、CF.求证:(1)△ABE≌△CBF;(2)FC⊥AC.D

D

E

6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE

交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.

4.如图,正方形ABCD中,E是对角线AC或延长线上一点,把BE绕点B顺时针旋转90°到BF

DEF

AB C

E

B

C

F

第五篇:全等三角形证明题09

全等三角形证明题09 ⑴ 已知如图,△ABC中,∠A=90°,AB=AC,AO为BC上的中线.

① 求证:OA=OB=OC.

② 设点M在AC上移动,点N在AB上移动,连结OM、ON、MN,当AM=BN时,试判断△MON的形状并予以证明.

M A B O C A B O C N ⑵ 已知如图,△ABC中,∠C=90°,AC=BC,D为AB的中点.一直角三角板的直角顶点绕D旋转,其两条直角边分别交射线AC于G,交射线CB于H.试找出图中除AC=BC,AD=CD=BD以外所有相等的线段并予以证明.

⑶ 已知如图,△ABC中,BD⊥AC于D,CE⊥AB于E.

① 在BD上截取BF=AC,在CE的延长线上截取CG=AB,连结AG、AF、GF,试判断△AFG的形状并予以证明.

B F C D E G A C G H B D A ② 分别在BD、CE的反向延长线上截取BF=AC,CG=AB,连结AG、AF、GF,①中的结论还成立吗?若成立,请予证明;若不成立,请说明理由.

G B F

C E

D A

全等三角形证明题09 ⑷ 探求规律.

① 如图,等边三角形ABC中,BM、CN相交于O,∠BON=60°,求证:BM=CN.

② 如图,正方形ABCD中,BM、CN相交于O,∠BON=90°,求证:BM=CN.

③ 如图,正五边形ABCDE中,BM、CN相交于O,∠BON=108°,求证:BM=CN.

④ 如图,正六边形ABCDEF中,BM、CN相交于O,∠BON=108°,求证:BM=CN.

⑤ 正n边形ABCDEFGH……中,BM、CN相交于O,当∠BON等于多少度时,BM=CN.请写出你的猜测(不需证明).

⑥ 如图,五边形ABCDE中,BM、CN相交于O,∠BON=108°,BM=CN仍成立吗?若成立,请予证明;若不成立,请说明理由.

E N A O B C D M B A F N E M O D B A O C E N D M B O C A N D M B N M O C A C 2

下载八年级全等三角形经典证明题word格式文档
下载八年级全等三角形经典证明题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一全等三角形证明题

    初二下期三角形全等证明题练习一、填空题1. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=DE,则∠ACE=____.BC第1题①②③BC(第2题)(第3题)2.如图,∠A=∠D,再添加条件___ 或条件_____,就可以......

    全等三角形证明题精选

    6. 已知:如图,△ABC和△A'B'C'中,∠BAC=∠B'A'C',∠B=∠B',AD、A'D'分别是∠BAC、∠B'A'C'的平分线,且AD=A'D'。求证:△ABC≌△A’B’C’。A' A2D' D B C B'7.已知:如图,AB=CD,AD=BC,O是AC中点,OE⊥AB......

    全等三角形(基础证明题)

    全等三角形——基础证明1. 把下列命题改写成“如果„„”“那么„„”的形式,指出它的题设和结论,并写出他们的逆命题.(1)同位角相等,两直线平行;解:如果_______________________,......

    全等三角形证明题1

    证明三角形全等专项练习试题1.在具有下列条件的两个三角形中,可以证明它们全等的是( )。(A)两个角分别对应相等,一边对应相等 (B)两条边对应相等,且第三边上的高也相等 (C)两条边对应相......

    全等三角形基础证明题

    全等三角形——基础证明1. 把下列命题改写成“如果„„”“那么„„”的形式,指出它的题设和结论,并写出他们的逆命题.(1)同位角相等,两直线平行;解:如果_______________________,......

    全等三角形的经典证明题

    全等三角形的经典证明题1、如图,已知AB=DE,BC=EF,AF=DC。求证:∠EFD=∠BCA2、如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D ,......

    2014七年级三角形全等证明题

    第五章全等三角形 B一、选择题(每题3分,共18分)1.下列命题①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角.它们的逆命题是真命题的个数是A.1个B.2个C.......

    全等三角形证明题专项练习

    全等三角形证明题专项练习1姓名:1、 全等三角形有哪些性质:____________________________________;两个三角形全等的判定方法有哪几种:_______________________________;而......