第一篇:人教版七年级数学下册三角形证明题
超冰辅导江畔花园B12栋702 陈老师 ***2012-04-031、如图,∠B= 42°,∠A + 10°=∠1,∠ACD= 64°,试证明:AB∥CD。
2、如图5,AB∥CD,∠BAE=∠DCE=45°,求∠E。(7分)
_C
图
5_D3、,在△ABC中,E是AC延长线上的一点,D是BC上的一点,下面的命题正确吗?若正确,请说明
理由。⑴ ∠1 = ∠E +∠A +∠B⑵ ∠1 >∠A A4、:如图,AB∥CD,AE和CE分别平分∠BAC和∠ACD,求证:AE⊥CE.
B
D
CE
A
E
C
D
B5、(1)下列图中具有稳定性是
4(2)对不具稳定性的图形,请适当地添加线段,使之具有稳定性。
6、知等腰三角形的一边等于8cm,另一边等于6cm,求此三角形的周长;
7、已知:∠A=27°,∠EFB=95°,∠B=38°,求∠D和∠DEB的度数.
D
C
F
A
超冰辅导江畔花园B12栋702 陈老师 ***2012-04-038、图,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度数。
(提示:延长BD交AC于点E)
D
BC9、在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=800,∠B=600;求∠AEC的度数.(8分)
D E10、探索!
如图,ΔABC中,∠ABC与∠ACB的平分线交于点I,根据下列条件,求∠BIC的度数。①若∠ABC=40°,∠ACB=60°,则∠BIC=。
②若∠ABC+∠ACB=100°,则∠BIC=。
③若∠A=80°,则∠BIC=。
④若∠A=120°则∠BIC=。
⑤从上述计算中,我们能发现已知∠A=x,求
A
C
第二篇:七年级数学 三角形 证明题
三角形与平行线相交线的套用
1.已知:四边形ABCD中, AC、BD交于O点, AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.求证:AD=BC
多次证明三角形全等得出角或边相等
2.(1)已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,∠1=∠2,求证:∠B=∠C
A B(2)已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。
F
E
可用多种方法证明 DC 3.已知:如图,AD=AE,AB=AC,BD、CE相交于O.求证:OD=OE.
通过全等三角形得出角相等利用等量代换或补角余角关系得出结论
4.已知:如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC。
A
E
B
DC如果直接证明线段或角相等比较困难时,可以将线段、角扩大(或缩小)或将线段、角分解为几部分,再分别证明扩大(或缩小)的量相等;或证明被分成的几部分对应相等,这是证明线段、角相等的一个常用手段。
5.已知:如图,AB=DE,BC=EF,CD=FA,∠A= ∠D。求证:∠B= ∠E。
通过高构造全等三角形
6.(1)已知:如图,△ABC中,D是BC的中点,∠1=∠2,求证:AB=AC。
(2)如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°。求证:DE=DF。
BAEFD
通过添加辅助线构造全等三角形直接证明线段(角)相等
7.已知:如图AB=AD,CB=CD,(1)求证:∠B=∠D.
(2)若AE=AF
试猜想CE与CF的大小关系并证明.
通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
8.如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF。
求证:AC=BF。
通过构造相等的直线,运用三角形全等得出两直线相等,再通过等量代换得出结论。
9、如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC交BC于D。求证:AB+BD=AC。
A
BDC
“倍长中线法”添加辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法
(1)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D.求证:DE=DF. 求证:BE=CF.
(2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点.
第三篇:七年级下册数学全等三角形的经典证明题
七年级下册数学全等三角形的经典证明题
1、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.
2、如图,已知: AD是BC上的中线 ,且DF=DE.
求证:BE∥CF.
3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF. 求证:AC=EF.
4、如图,在ΔABC中,AC=AB,AD是BC边上的中线。求证:AD⊥BC,5、如图,已知AB=DE,BC=EF,AF=DC。求证:∠EFD=∠BCA
6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)ΔBDH≌ΔADC。
BAFCDEBEDCAGFABDCAHEBDC7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。
10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系.
11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,FAEDAMPCDNBBD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.
求证:BD=2CE.
12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.BCADBFCE13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.求证:EG=EF;请你判断BE+CF与EF的大小关系,并说明理由。
GBEDAFC
14、如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.
i.ii.求证:MB=MD,ME=MF
当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
15、如图(1),(1)已知△ABC中, ∠BAC=90, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD (3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.0 七年级下册数学全等三角形的经典证明题 姓名: 学号: 四川省成都市大邑县韩场镇学校:龚永彬 1、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF. 2、如图,已知: AD是BC上的中线 ,且DF=DE. 求证:BE∥CF. 3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF. 求证:AC=EF. 4、如图,在ΔABC中,AC=AB,AD是BC边上的中线。求证:AD⊥BC,BEAGFDCABDCE5、如图,已知AB=DE,BC=EF,AF=DC。求证:∠EFD=∠BCA AD CF B 6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。 A(1)∠DBH=∠DAC; (2)ΔBDH≌ΔADC。 E H BDC7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。 8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。 10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系. ADM PN C B 11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE. F A E D、BC 12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.A D FC B E 13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,ADE⊥DF,交AB于点E,连结EG、EF.求证:EG=EF; F请你判断BE+CF与EF的大小关系,并说明理由。E BCD 14、如图①,E、F分别为线段AC上的两个动点,且G DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. i.求证:MB=MD,ME=MF ii.当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 15、如图(1),(1)已知△ABC中, ∠BAC=90, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD (3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.0 七年级下册数学全等三角形的经典证明题 7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。 8、如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。 10、已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,•PN⊥CD于N,判断PM与PN的关系.ADM N C 11、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.F A E D、BC 12、在△ABC中,,AB=AC,在AB边上取点D,在AC延长线上了取点E,使CE=BD,连接DE交BC于点F,求证DF=EF.B 13、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,ADE⊥DF,交AB于点E,连结EG、EF.求证:EG=EF;F请你判断BE+CF与EF的大小关系,并说明理由。 BCD G 14、如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. i.求证:MB=MD,ME=MF ii.当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否 成立?若成立请给予证明;若不成立请说明理由.第四篇:七年级下册数学全等三角形的经典证明题
第五篇:七年级下册数学全等三角形的经典证明题