第一篇:七年级数学下册《相交线与平行线》证明题
七年级数学下册《相交线与平行线》测试题
一、选择题:(每题2.5分,共35分)
1.下列所示的四个图形中,1和2是同位角的是()...
112
221③②①
A.②③B.①②③C.①②④D.①④ ④B
342D2.如右图所示,点E在AC的延长线上,下列条件中能判断...AB//CD()A.34B.12
C.DDCED.DACD180ACE
3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()
A.第一次向左拐30,第二次向右拐30B.第一次向右拐50,第二次向左拐130
C.第一次向右拐50,第二次向右拐130D.第一次向左拐50,第二次向左拐130
4.两条平行直线被第三条直线所截,下列命题中正确的是()..
A.同位角相等,但内错角不相等B.同位角不相等,但同旁内角互补
C.内错角相等,且同旁内角不互补D.同位角相等,且同旁内角互补
5.下列说法中错误的个数是()..
(1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A.1个B.2个C.3个D.4个
6.下列说法中,正确的是()..
A.图形的平移是指把图形沿水平方向移动。
B.平移前后图形的形状和大小都没有发生改变。
C.“相等的角是对顶角”是一个真命题。
D.“直角都相等”是一个假命题。
7.如右图,AB//CD,且A25,C45,则E的度数是()A.60B.70C.110D.80 8.如右图所示,已知ACBC,CDAB,垂足分别是 的是()C、D,那么以下线段大小的比较必定成立....A.CDADB.ACBCC.BCBDD.CDBD
9.在一个平面内,任意四条直线相交,交点的个数最多有()
A.7个B.6个C.5个D.4个
10.如右图所示,BE平分ABC,DE//BC,图中相等的角共有()DA.3对B.4对C.5对D.6对
11.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.
图中线段的长能表示点到直线(或线段)距离的线段有()
(A)1条(B)3条(C)5条(D)7条
12.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于„„()(A)20°(B)70°(C)110°(D)70°或110°
13、如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是()
(A)2(B)4(C)5(D)6
14.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到
B
EC
A
D
B
A
E
C
B
C
D
C点,则∠ABC等于()
(A)75°(B)105°(C)45°(D)135°
三、填空题:(每题2.5分,共40分)
1.把命题“等角的余角相等”写成“如果„„,那么„„。”的形式 为。
=110,则2=2.用吸管吸易拉罐内的饮料时,如图①,
1互相平行)
A
BC
图①
图②
图③
3.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的1=°时,电线杆与地面垂直。
4.如图③,按角的位置关系填空:A与1是;A与
3是;2与3是。5.如图④,若12=220,则3=。
a
123
’
C
B
B’
c
ab
图⑤图⑥
6.如图⑤,已知a//b,若150,则2若3=100,则2。
‘’‘7.如图⑥,为了把ABC平移得到ABC,可以先将ABC向右平移格,再向上
图④
b
平移格。
8、如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF=
9、如图,当∠1=∠时,AB∥DC;当∠D+∠=180°时,AB∥DC; 当∠B=∠时,AB∥CD.
10、如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=.
第8题第9题第10题
11、在同一平面内,有五条直线两两相交,最多可成 对同位角对对顶角对同旁内角。
12、两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是.
13、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=.
14、如图,AD∥BC,点O在AD上,BO、CO分别平分∠ABC、∠DCB,若
∠A+∠D=m°.则∠BOC=______.
CA
E
BF
D
图⑦
第13题第14题第15题
15、三条直线AB、CD、EF相交于点O,如图⑦所示,AOD的对
顶角是,FOB的对顶角是,EOB的邻补角
是。
16、有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠a=度.
四、解答题。(每题4分,共40分)
1、如图,已知:1=2,D=50,求B的度数。
E
A
B
D
GH
C2、如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:AD//BC。
3、如图,已知AB//CD,B40,CN是BCE的平分线,CMCN,求BCM的度数。
A
D
F
B
C
E
AB
N
M
C
D
E4、如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.
5、如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.
6、如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.
求∠PAG的度数.
7、如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.
8、已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.
求证:EF平分∠BED.
9、已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.
10、已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论.
第二篇:平行线与相交线证明题
1七年级数学第五章相交线平行线
证明题专项
1如图,已知AB∥CD, ∠1=∠
3AB 试说明AC∥BD.231 C
D2、如图,已知∠BAF=50°,∠ACE=140°,CD⊥CE,能判断DC∥AB吗?为什
F
么? A
B
C
D
E3、如图,已知CD⊥AD,DA⊥AB,∠1=∠2。则DF与AE平行吗?为什么? C
2D
F
E
1A
B4、如图,AB∥CD,AD∥BC,∠A=3∠B.求∠A、∠B、∠C、∠D的度数.D
C5、如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM与HN平行吗?为什么?
A BMHF
7、已知∠ACB=600,∠ABC=500,BO、CO分别平分∠ABC、∠ACB,EF是经过点O且平行于BC的直线,求∠BOC的度数。
B图15C8、已知:AD∥BC,∠1=∠2,∠3=∠4.DE与CF平行吗?为什么?
9、已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=500求: ∠BHF的度数。
E
HB
CFD10、如图,直线AB、CD相交于点O,OA平分∠COE,∠COE:∠EOD=4:5,求∠
11、如图21,AB∥DE,∠1=∠ACB,∠CAB=2∠BAD,试说明AD∥BC.
14、如图:已知AD∥BE, ∠1=∠2, 请说明∠A=∠E的理由.DE
3AB
C15、已知如图,直线AB、CD相交于O,OE平分∠BOD,OF平分∠COB,∠2∶∠1=4∶1,求∠AOF的度数。
D如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.E1
2AB
CF16、已知:如图∠1=∠2,∠C=∠D,∠A=∠F相等吗?
FED
试说明理由
H G
27.已知DB∥FG∥EC,A是FG上一点,∠ABD= ABC
60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC17、已知:如图2-96,DE⊥AO于E,BO⊥AO,FC⊥AB的大小;⑵∠PAG的大小 于C,∠1=∠2,求证:DO⊥AB.20,若要能使AB∥ED,∠B、∠C、∠D
应满足什么条件?
28.如图,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,求证:(1)CD⊥CB;(2)CD•平
分∠ACE.A
D
E22.如图,AOC与BOC是邻补
C
角,OD、OE分别是AOC与BOC的平分线,试
判断OD与OE的位置关系,并说明理由.
30.如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE。
23.如图,AB∥DE,试问∠B、∠E、∠BCE有什么31.如图:直线AB、CD被EF所截,若已知AB//CD,求证:∠1 = ∠2。关系.
B
24.如图,已知∠1=∠2 求证:a∥b.⑵直线a//b,求证:12.
D F
32.已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F
=180°。
33.已知,如图11,∠BAE+∠AED=180°,∠M=∠N,试说明:∠1=∠2.34.如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由
.35.如图,∠1=∠2,AC平分∠DAB,试说明:DC∥AB.36.如图,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠1=∠2,试说明:DE∥FB.39.如图2-67,已知∠1=∠2,求∠3+∠4的度数.
43.已知AB∥CD,∠1和∠A
E D F
44.如图10,已知AB∥CD,∠1 =∠2,求证:BM∥CN
ANB
DM图10
45.已知,如图11,①若∠BED =∠B +∠D,求证:AB∥CD。②若AB∥CD,求证:∠BED =∠B +∠D
BA
E
DC
图1
147.如图8,直线AB、CD相交于点O,OE⊥AB,∠BOD = 75,求∠EOD的度数 E
D
图8
C
48.已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.
49.如图,∠2=3∠1,且∠1+∠3=90,试说明:AB∥
CD.56.如图④,在四边形ABCD中,已知AB∥CD,∠B=60°,你能求出哪些角的度数?为什么?你能求出∠A的度数吗?
50.51.57.如图⑤,在四边形ABCD中,已知∠B=60°.∠C=120°,由这些条件你能判断哪两条直线平行?说说你的理由。
58.如图⑦,∠1=∠2,能判断AB∥DF吗?为什么? 若不能判断AB∥DF,你认为还需要再添加的一个条件是什么呢?写出这个条件,并说明你的理由。
53.如图,已知:∠A=∠1,∠C=∠2,求证:AB∥
CD.59.如图⑧,BC∥DE,小颖用量角器分别画出∠ABC、∠ADE的角平分线BG、DH,想一想,小颖所画的这两条射线BG和DH会平行吗?为什么?(请你先用量角器画出这两条角平分线)
58、如图,把长方形纸片ABCD沿EF折叠,若∠EFG=50º,(1)找出图中也是50º的角;
(2)说明∠FGM=2∠EFG=100º的理由.图
1DE59、如图,E点为DF上的点,B为AC
1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
62.是小明设计的智力拼图玩具.现在小明遇到了下面两个问题,请你帮助解决.(1),.为D=32°ACD=60°保证AB//DE,A应等于多少度?
(2)若GP//HQ,G、F、H之间有什么样的关系?
AB
E
DN
C
63.如图4所示,直线AB、CD被直线EF所截.(1)若1=80°,2=100°,由此你可以判定AB和CD平行吗?为什么?(2)若2=100°,3=100°,由此你可以判定AB和CD平行吗?
F
A
第三篇:相交线与平行线证明题
相交线与平行线证明题
1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。
3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。
4.已知:如图,求证:EC∥DF.,且
.5.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
B
6.如图,已知AB//CD,B40,CN是BCE的平分线,
D 图10
B
C
A
CMCN,求BCM的度数。
N
M
C
D
E
7.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.
E
A
C
F
图Q
B P D
8.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。
求证:GH∥MN。
9.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。
10.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。
11.如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:
AD//BC
A
B
C
E
第四篇:相交线平行线证明题
相交线平行线证明题
由于分成了2部分那么肯定E在正方形的边上,不然就没分成2部分拉,哈哈。
如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。
由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。
不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的曲线,我们连接AE,肯定的知道AE是比线段AE长,(两点之间线段最断嘛)。
因为三角形ABE当中AE是斜边,所以很容易得到:
曲线AE>线段AE>AB=2
第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。
在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF
三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。
所以
曲线AE>AB=2
其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉
证明:因为∠1与∠3互补
所以DE//BC
所以∠1=∠4(两直线平行,同位角相等)
所以∠2=∠4(对顶角相等)
所以∠1=∠2(等量代换)
(电脑打不出“因为”,“所以:,在写证明过程中,将因为和所以改成三个点的样子)
第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。
在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF
三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。
所以
曲线AE>AB=2
其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉
证明:因为∠1与∠3互补
所以DE//BC
所以∠1=∠4(两直线平行,同位角相等)
所以∠2=∠4(对顶角相等)
所以∠1=∠2(等量代换)
(电脑打不出”因为“,”所以:,在写证明过程中,将因为和所以改成三个点的样子)
第五篇:七年级数学下册 相交线与平行线测试题
相交线与平行线测试题
一、填空题
1.一个角的余角是30º,则这个角的补角是2.一个角与它的补角之差是20º,则这个角的大小是3.时钟指向3时30分时,这时时针与分针所成的锐角是4.如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.5.如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD = 28º,则∠BOE =度,∠AOG =度.6.如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC =.7.把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = 8.如图⑦,正方形ABCD中,M在DC上,且BM = 10,N是AC上一动点,则DN + MN的最小值为.9.如图所示,当半径为30cm的转动轮转过的角度为120时,则传送带上的物体A平移的距离为cm。
10.如图所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分
别平移到图中EF和EG的位置,则△EFG为三角形,若AD=2cm,BC=8cm,则FG =。
11.如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等
于,∠3的同旁内角等于.
12.如图10,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC
内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是
F
二、选择题
1.下列正确说法的个数是()
①同位角相等②对顶角相等
③等角的补角相等④两直线平行,同旁内角相等
A.1,B.2,C.3,D.42.下列说法正确的是()
A.两点之间,直线最短;
B.过一点有一条直线平行于已知直线;
C.和已知直线垂直的直线有且只有一条;
D.在平面内过一点有且只有一条直线垂直于已知直线.3.下列图中∠1和∠2是同位角的是()
A.⑴、⑵、⑶,B.⑵、⑶、⑷,C.⑶、⑷、⑸,D.⑴、⑵、⑸
4.如果一个角的补角是150°,那么这个角的余角的度数是()
A.30°B.60°C.90°D.120°
5.下列语句中,是对顶角的语句为()
A.有公共顶点并且相等的两个角
B.两条直线相交,有公共顶点的两个角
C.顶点相对的两个角
D.两条直线相交,有公共顶点没有公共边的两个角
6.下列命题正确的是()
A.内错角相等
B.相等的角是对顶角
C.三条直线相交,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
7.两平行直线被第三条直线所截,同旁内角的平分线()
A.互相重合B.互相平行C.互相垂直D.无法确定
8.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。)
C D
9.三条直线相交于一点,构成的对顶角共有()
A、3对B、4对C、5对D、6对
10.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与
∠AGE相等的角有()
A.5个B.4个C.3个D.2个
11.如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB
=12,BC=24,AC=18,则△AMN的周长为()。
A、30B、36C、42D、18
12.如图,若AB∥CD,则∠A、∠E、∠D之间的关系是()
A.∠A+∠E+∠D=180°
B.∠A-∠E+∠D=180°
C.∠A+∠E-∠D=180°
D.∠A+∠E+∠D=270°
三、计算题
1.如图,直线a、b被直线c所截,且a∥b,若∠1=118°求∠2为多少度?
2.已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少?
四、证明题
1.已知:如图,DA⊥AB,DE平分∠ADC,CE平分∠BCD, C且∠1+∠2=90°.试猜想BC与AB有怎样的位置关系,D并说明其理由
B
2.已知:如图所示,CD∥EF,∠1=∠2,.试猜想∠3与∠ACB有怎样的大小关系,并说明其理由 A
GD
E
CBF
3.如图,已知∠1+∠2+180°,∠DEF=∠A, A试判断∠ACB与∠DEB的大小关系,并对结论进行说明.D
2F
CBE
4.如图,∠1=∠2,∠D=∠A,那么∠B=∠C吗?为什么?
BAF
E
五、应用题
1.如图(a)示,五边形ABCDE是张大爷十年前承包的一块土地示意图,经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,•要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)
(1)写出设计方案,并在图中画出相应的图形;
(2)说明方案设计理由.E
AD
ADBCMEN
(a)(b)
9.10.11.80,80,100
12.9
BDDBDDCCDAAC
三、(1)解:∵ ∠1+∠3=180°(平角的定义)
又 ∵∠1=118°(已知)
∴∠3= 180°-∠1 = 180°-118°= 62°
∵a∥b(已知)
∴∠2=∠3=62°(两直线平行,内错角相等)
答:∠2为62°
(2)解:设这个角的余角为x,那么这个角的度数为(90°-x),这个角的补角为(90°+x),这个角的余角的补角为(180°-x)依题意,列方程为:
180°-x=(x+90°)+90°
解之得:x=30°
这时,90°-x=90°-30°=60°.答:所求这个的角的度数为60°.另解:设这个角为x,则:
180°-(90°-x)-(180°-x)=90°
解之得:x=60°
答:所求这个的角的度数为60°.四、(1)解: BC与AB位置关系是BC⊥AB。其理由如下:
∵ DE平分∠ADC, CE平分∠DCB(已知),∴∠ADC=2∠1, ∠DCB=2∠2(角平分线定义).∵∠1+∠2=90°(已知)
∴∠ADC+∠DCB = 2∠1+2∠2
= 2(∠1+∠2)=2×90° = 180°.∴ AD∥BC(同旁内角互补,•两直线平行).∴ ∠A+∠B=180°(两直线平行,同旁内角互补).∵ DA⊥AB(已知)
∴ ∠A=90°(垂直定义).∴∠B=180°-∠A = 180°-90°=90°
∴BC⊥AB(垂直定义).1212
(2)解: ∠3与∠ACB的大小关系是∠3=∠ACB,其理由如下:
∵ CD∥EF(已知),∴∠2=∠DCB(两直线直行,同位角相等).又∵∠1=