第一篇:七年级数学相交线与平行线练习题
相交线与平等线练习题2012-2-251、如图,直线a,b相交于点O,若∠1等于40°,则∠2等于()
A.50°B.60°C.140°D.160°
2、如图,已知AB∥CD,∠A=70°,则∠1的度数是()
A.70°B.100°C.110°D.130°
3、已知:如图,ABCD,垂足为O,EF为过点O的一条直线,则1 与2的关系一定成立的是()
A.相等
B
F
D
AO
B
B.互余
C.互补
D.互为对顶角
C
E
D
第3题第1题第2题
4、如图,AB∥DE,E65,则BC()
A.13
5
B.115
C.36D.65
5、如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20方向行走至C处,此时需把方向调整到与出
发时一致,则方向的调整应是()
A.右转80°B.左转80°C.右转100°D.左转100°
6、如图,如果AB∥CD,那么下面说法错误的是()
A.∠3=∠7;B.∠2=∠6C、∠3+∠4+∠5+∠6=180D、∠4=∠8
A B E
A
B
第6题第4题第5题
7、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么123()A.180
M
1P
23N
a
B.270
C.360
D.540
b8、如图,已知∠3=∠4,若要使∠1=∠2,则还需()
A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD9、如图4,AB∥DE,∠1=∠2,则AE与DC的位置关系是()。A、相交B、平行C、垂直D、不能确定
10、如图5,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角有()。
A、2个B、4个C、5个D、6个
11、如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为()。
A、30B、36C、42D、1812、如图7,如图,AB∥DE,∠E=65 º,则∠B+∠C=()
A.135ºB.115ºC.36ºD.65º
13、如图8,当剪刀口∠AOB增大21°时,∠COD增大。
14、如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于______,∠3的内错角等于______,∠3的同旁
内角等于______.
15.如图10,一个宽度相等的纸条按如图所示方法折叠一下,则∠1______________.
16.吸管吸易拉罐的饮料时,如图11,1110,则2(易拉罐的上下底面互相平行)
图8图9图10图1
117.如图12,CD⊥AB于D,DE∥BC,∠1=∠2,则FG与AB的位置关系是_____。
18、如图13,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC为().A.30°B.60°C.90°D.120°
19、如图14,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;
④∠5+∠8=180°.其中能判断a∥b的条件是().A.①③B.②④C.①③④D.①②③④
图
2A
c
a
b 图1
4E C
图1320、如图15,直线a∥b,直线c与a,b 相交.若170,则2_____.
21、如图16,已知170,270,360,则4______.
22、如图17,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=______
c a b
a
D
C
b
A
B
图15图16图17
23、如图18,请写出能判定CE∥AB的一个条件.
24、如图19,已知AB//CD,=____________
25、如图20,若如果∠1=那么AB∥EF,若如果∠1=___那么DF∥AC,若∠DEC+___=180°,那么DE∥BC.A
3B
C
a b
A图20
E B
图18图1926、如图21,l1∥l2,∠1=105°,∠2=40°,则∠3=.27、如图22,AB∥CD,BC∥DE,则∠B+∠D=.28、如图23,AD∥BC,AB∥CD,E在CB的延长线上,EF经过点A,∠C=50°,∠FAD=60°,则∠EAB=.图21 图2
2图2329、如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动
刀片时会形成∠
1、∠2,则∠1+∠2=___。
30、推理填空:
如图: ① 若∠1=∠2,则∥()若∠DAB+∠ABC=180,则∥()
C
②当∥时,∠ C+∠ABC=180()当∥时,∠3=∠C()
A
B31、已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50,求:∠BHF的度数. 解:
32、已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2. 解:
D
A
EH
B
CFD
B
E
F
G
C33、如图13,已知∠AED=60°,∠2=30°,EF平分∠AED,可以判断EF∥BD吗?为什么? 解:
34、如图,已知,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40,求∠2的度数。解:
35、如图25,已知:AB∥CD,AE平分∠BAC,CE平分∠ACD,请说明:AE⊥CF.解:
E
图
5B D36、如图,AB∥CD,需增加什么条件才能使∠1=∠2成立?(至少举出两种)解:
37、在如图,已知直线AB和直线CD被直线EF所截,交点分别为E、F,∠AEF=∠EFD.(1)直线AB和直线CD平行吗?为什么?
(2)若EM是∠AEF的平分线,FN是∠EFD的平分线,则EM与FN
平行吗?为什么? 解:
38、如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性。
A
B
D
(1)(2)(3)(4)
解:结论:(1)(2)
(3)(4)
选择结论:,说明理由。
第二篇:七年级数学《相交线与平行线》练习题
过去属于死神,未来属于你自己。彭宏威
七年级数学《相交线与平行线》练习题
一、选择题(每小题4分,共24分)
1.下面四个图形中,∠1与∠2是对顶角的图形的点A到直线c的距离是3cm。
二、填空题(每小题4分,共20分)个数是()
A.0B.1C.2D.
22.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()
A.第一次右拐50°,第二次左拐130°。
B.第一次左拐50°,第二次右拐50°。C.第一次左拐50°,第二次左拐130°。D.第一次右拐50°,第二次右拐50°。
3.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥bB.b⊥d
C.a⊥dD.b∥c
4.三条直线两两相交于同一点时,对顶角有m对,交于不同三点时,对顶角有n对,则m与n的关系是()
A.m = nB.m>n
C.m<nD.m + n = 10
5.如图,若m∥n,∠1 = 105°,则∠2 =()A.55°B.60°C.65°D.75°
1m2
n
6.下列说法中正确的是()
A.有且只有一条直线垂直于已知直线。
B.从直线外一点到这条直线的垂线段,叫做
这点到这条直线的距离。
C.互相垂直的两条直线一定相交。
D.直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是3cm,则
7.两个角的两边两两互相平行,且一个角的12
等
于另一个角的13,则这两个角的度数分别
为。
8.猜谜语(打本章两个几何名称)。
剩下十分钱;两牛相斗。9.下面生活中的物体的运动情况可以看成平移的是。
(1)摆动的钟摆。(2)在笔直的公路上行驶的汽车。(3)随风摆动的旗帜。(4)摇动的大绳。(5)汽车玻璃上雨刷的运动。(6)从楼顶自由落下的球(球不旋转)。
10.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,则∠AOC =,∠COB =。
A
E
D
D
O
C
B
AB
(第10题图)(第11题图)11.如图,AC平分∠DAB,∠1 =∠2。填空:因
为AC平分∠DAB,所以∠1 =。所
以∠2 =。所以AB∥。
三、做一做(本题10分)12.已知三角形ABC、点D,过点D作三角形ABC
平移后的图形。
A
D
BC
第三篇:相交线与平行线证明练习题
课后练习题
1.下列命题:
①不相交的两条直线平行;②梯形的两底互相平行;
③同垂直于一条直线的两直线平行; ④同旁内角相等,两直线平行.其中真命题有()
A.1个B.2个C.3个D.4个
2.下列图形中,由AB∥CD,能得到1
2的是()
3.如图,AB//CD//EF, ∠ABE=38°,∠BCD=100°,则∠BEC=()
A.42°B.32°C.62°D.38°
4.如图,直线EF分别与直线AB.CD相交于点G.H,已知∠1=∠2=90°,GM平分∠HGB交直线CD于点M.则∠3=()
A.60°B.65°C.70°D.130°
5.如图所示,已知直线AB∥CD,C125°,A45°,则E的度数为()
A.70°B.80°C.90°D.100°
6.如果两条平行线被第三条直线所截,一对同旁内角的度数之比是2:7,那么这两个角分别是____
7.把命题“等角的补角相等”写成“如果……那么……”的形式是:
8.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
∵∠1=∠2∠2=∠3 ∠1=∠4()
∴∠3=∠4()
∴____∥____()
∴∠C=∠ABD()
∵∠C=∠D()
∴∠D=∠ABD()
∴DF∥AC()
9.已知:如图,AD∥BC,∠1=∠2,∠3=∠4.DE与CF平行吗?为什么?
10.已知:如图,AB,CD,EF三直线相交于一点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,求∠BOG的度数.
11.已知:如图,∠1=40°,∠2=65°,AB∥DC,求:∠ADC和∠A的度数.
12.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.
13.已知:如图,CD平分∠ACB,AC∥DE,CD∥EF,求证:EF平分∠DEB.
第四篇:七年级数学下册 相交线与平行线测试题
相交线与平行线测试题
一、填空题
1.一个角的余角是30º,则这个角的补角是2.一个角与它的补角之差是20º,则这个角的大小是3.时钟指向3时30分时,这时时针与分针所成的锐角是4.如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.5.如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD = 28º,则∠BOE =度,∠AOG =度.6.如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC =.7.把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = 8.如图⑦,正方形ABCD中,M在DC上,且BM = 10,N是AC上一动点,则DN + MN的最小值为.9.如图所示,当半径为30cm的转动轮转过的角度为120时,则传送带上的物体A平移的距离为cm。
10.如图所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分
别平移到图中EF和EG的位置,则△EFG为三角形,若AD=2cm,BC=8cm,则FG =。
11.如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等
于,∠3的同旁内角等于.
12.如图10,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC
内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是
F
二、选择题
1.下列正确说法的个数是()
①同位角相等②对顶角相等
③等角的补角相等④两直线平行,同旁内角相等
A.1,B.2,C.3,D.42.下列说法正确的是()
A.两点之间,直线最短;
B.过一点有一条直线平行于已知直线;
C.和已知直线垂直的直线有且只有一条;
D.在平面内过一点有且只有一条直线垂直于已知直线.3.下列图中∠1和∠2是同位角的是()
A.⑴、⑵、⑶,B.⑵、⑶、⑷,C.⑶、⑷、⑸,D.⑴、⑵、⑸
4.如果一个角的补角是150°,那么这个角的余角的度数是()
A.30°B.60°C.90°D.120°
5.下列语句中,是对顶角的语句为()
A.有公共顶点并且相等的两个角
B.两条直线相交,有公共顶点的两个角
C.顶点相对的两个角
D.两条直线相交,有公共顶点没有公共边的两个角
6.下列命题正确的是()
A.内错角相等
B.相等的角是对顶角
C.三条直线相交,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
7.两平行直线被第三条直线所截,同旁内角的平分线()
A.互相重合B.互相平行C.互相垂直D.无法确定
8.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。)
C D
9.三条直线相交于一点,构成的对顶角共有()
A、3对B、4对C、5对D、6对
10.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与
∠AGE相等的角有()
A.5个B.4个C.3个D.2个
11.如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB
=12,BC=24,AC=18,则△AMN的周长为()。
A、30B、36C、42D、18
12.如图,若AB∥CD,则∠A、∠E、∠D之间的关系是()
A.∠A+∠E+∠D=180°
B.∠A-∠E+∠D=180°
C.∠A+∠E-∠D=180°
D.∠A+∠E+∠D=270°
三、计算题
1.如图,直线a、b被直线c所截,且a∥b,若∠1=118°求∠2为多少度?
2.已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少?
四、证明题
1.已知:如图,DA⊥AB,DE平分∠ADC,CE平分∠BCD, C且∠1+∠2=90°.试猜想BC与AB有怎样的位置关系,D并说明其理由
B
2.已知:如图所示,CD∥EF,∠1=∠2,.试猜想∠3与∠ACB有怎样的大小关系,并说明其理由 A
GD
E
CBF
3.如图,已知∠1+∠2+180°,∠DEF=∠A, A试判断∠ACB与∠DEB的大小关系,并对结论进行说明.D
2F
CBE
4.如图,∠1=∠2,∠D=∠A,那么∠B=∠C吗?为什么?
BAF
E
五、应用题
1.如图(a)示,五边形ABCDE是张大爷十年前承包的一块土地示意图,经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,•要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)
(1)写出设计方案,并在图中画出相应的图形;
(2)说明方案设计理由.E
AD
ADBCMEN
(a)(b)
9.10.11.80,80,100
12.9
BDDBDDCCDAAC
三、(1)解:∵ ∠1+∠3=180°(平角的定义)
又 ∵∠1=118°(已知)
∴∠3= 180°-∠1 = 180°-118°= 62°
∵a∥b(已知)
∴∠2=∠3=62°(两直线平行,内错角相等)
答:∠2为62°
(2)解:设这个角的余角为x,那么这个角的度数为(90°-x),这个角的补角为(90°+x),这个角的余角的补角为(180°-x)依题意,列方程为:
180°-x=(x+90°)+90°
解之得:x=30°
这时,90°-x=90°-30°=60°.答:所求这个的角的度数为60°.另解:设这个角为x,则:
180°-(90°-x)-(180°-x)=90°
解之得:x=60°
答:所求这个的角的度数为60°.四、(1)解: BC与AB位置关系是BC⊥AB。其理由如下:
∵ DE平分∠ADC, CE平分∠DCB(已知),∴∠ADC=2∠1, ∠DCB=2∠2(角平分线定义).∵∠1+∠2=90°(已知)
∴∠ADC+∠DCB = 2∠1+2∠2
= 2(∠1+∠2)=2×90° = 180°.∴ AD∥BC(同旁内角互补,•两直线平行).∴ ∠A+∠B=180°(两直线平行,同旁内角互补).∵ DA⊥AB(已知)
∴ ∠A=90°(垂直定义).∴∠B=180°-∠A = 180°-90°=90°
∴BC⊥AB(垂直定义).1212
(2)解: ∠3与∠ACB的大小关系是∠3=∠ACB,其理由如下:
∵ CD∥EF(已知),∴∠2=∠DCB(两直线直行,同位角相等).又∵∠1=
第五篇:七年级数学下册《相交线与平行线》证明题
七年级数学下册《相交线与平行线》测试题
一、选择题:(每题2.5分,共35分)
1.下列所示的四个图形中,1和2是同位角的是()...
112
221③②①
A.②③B.①②③C.①②④D.①④ ④B
342D2.如右图所示,点E在AC的延长线上,下列条件中能判断...AB//CD()A.34B.12
C.DDCED.DACD180ACE
3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()
A.第一次向左拐30,第二次向右拐30B.第一次向右拐50,第二次向左拐130
C.第一次向右拐50,第二次向右拐130D.第一次向左拐50,第二次向左拐130
4.两条平行直线被第三条直线所截,下列命题中正确的是()..
A.同位角相等,但内错角不相等B.同位角不相等,但同旁内角互补
C.内错角相等,且同旁内角不互补D.同位角相等,且同旁内角互补
5.下列说法中错误的个数是()..
(1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A.1个B.2个C.3个D.4个
6.下列说法中,正确的是()..
A.图形的平移是指把图形沿水平方向移动。
B.平移前后图形的形状和大小都没有发生改变。
C.“相等的角是对顶角”是一个真命题。
D.“直角都相等”是一个假命题。
7.如右图,AB//CD,且A25,C45,则E的度数是()A.60B.70C.110D.80 8.如右图所示,已知ACBC,CDAB,垂足分别是 的是()C、D,那么以下线段大小的比较必定成立....A.CDADB.ACBCC.BCBDD.CDBD
9.在一个平面内,任意四条直线相交,交点的个数最多有()
A.7个B.6个C.5个D.4个
10.如右图所示,BE平分ABC,DE//BC,图中相等的角共有()DA.3对B.4对C.5对D.6对
11.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.
图中线段的长能表示点到直线(或线段)距离的线段有()
(A)1条(B)3条(C)5条(D)7条
12.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于„„()(A)20°(B)70°(C)110°(D)70°或110°
13、如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是()
(A)2(B)4(C)5(D)6
14.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到
B
EC
A
D
B
A
E
C
B
C
D
C点,则∠ABC等于()
(A)75°(B)105°(C)45°(D)135°
三、填空题:(每题2.5分,共40分)
1.把命题“等角的余角相等”写成“如果„„,那么„„。”的形式 为。
=110,则2=2.用吸管吸易拉罐内的饮料时,如图①,
1互相平行)
A
BC
图①
图②
图③
3.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的1=°时,电线杆与地面垂直。
4.如图③,按角的位置关系填空:A与1是;A与
3是;2与3是。5.如图④,若12=220,则3=。
a
123
’
C
B
B’
c
ab
图⑤图⑥
6.如图⑤,已知a//b,若150,则2若3=100,则2。
‘’‘7.如图⑥,为了把ABC平移得到ABC,可以先将ABC向右平移格,再向上
图④
b
平移格。
8、如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF=
9、如图,当∠1=∠时,AB∥DC;当∠D+∠=180°时,AB∥DC; 当∠B=∠时,AB∥CD.
10、如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=.
第8题第9题第10题
11、在同一平面内,有五条直线两两相交,最多可成 对同位角对对顶角对同旁内角。
12、两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是.
13、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=.
14、如图,AD∥BC,点O在AD上,BO、CO分别平分∠ABC、∠DCB,若
∠A+∠D=m°.则∠BOC=______.
CA
E
BF
D
图⑦
第13题第14题第15题
15、三条直线AB、CD、EF相交于点O,如图⑦所示,AOD的对
顶角是,FOB的对顶角是,EOB的邻补角
是。
16、有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠a=度.
四、解答题。(每题4分,共40分)
1、如图,已知:1=2,D=50,求B的度数。
E
A
B
D
GH
C2、如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:AD//BC。
3、如图,已知AB//CD,B40,CN是BCE的平分线,CMCN,求BCM的度数。
A
D
F
B
C
E
AB
N
M
C
D
E4、如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.
5、如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.
6、如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.
求∠PAG的度数.
7、如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.
8、已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.
求证:EF平分∠BED.
9、已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.
10、已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论.