第一篇:相交线与平行线知识点
第五章相交线与平行线知识点小结
● 相交线
1.相交线:在同一平面内,相交的两条直线。-----特点:有一个交点
2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线
-----性质:对顶角相等
-----N条直线相交有N(N—1)对对顶角
3.邻补角----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线
-----性质:邻补角互补(和为180°)
-----N条直线相交有2N(N—1)对邻补角
4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。
---性质:(1)过直线外一点有且只有一条直线与已知直线垂直
(2)垂线段最短
----点到直线的距离:就是点到直线的垂线段的长度。
●平行线
1.平行线:在同一平面内,不相交的两条直线。-----特点:没有交点
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。
3.三线八角
形成方式-------两条直线被第三条直线所截(这两条直线不一定平行)名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)
4.平行线的判定方法----(1)同位角相等,两直线平行
(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行
(4)如果两条直线分别与第三条直线平行,那么这
两条直线也互相平行。
5.平行线的性质-------(1)两直线平行,同位角相等
(2)两直线平行,内错角相等
(3)两直线平行,同旁内角互补
6.两条平行线间的距离-----就是两条平行线间的垂线段的长度。
● 命题
1.定义:判断一件事情的语句
2.组成----(1)题设(如果……)(2)结论(那么……)
3.分类----(1)真命题(2)假命题
●平移
1.定义:一个图形沿着一定的方向平行移动。
2.特点----(1)平移后图形的形状、大小不变,位置改变
(2)对应点所连接的线段平行(或在同一直线上),对应角相等。
关键知识点:教你用倒推法做证明题
1.已知:如图,BAPAPD180,12。
求证:EF
ABE
F
CPD
CD,2,练习
已知:如图,12,3B,AC//DE,且B、C、D在一条直线上。求证:AE//BD
A
1E2
BCD
第二篇:相交线与平行线知识点归纳
相交线与平行线知识点小结
一、相交线
1.相交线:两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。)
2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线-----性质:对顶角相等
3.邻补角:两条直线相交,产生邻补角和对顶角的概念。要注意区分互为邻补角与互为补角的异同。
----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线
-----性质:邻补角互补(和为180°)
4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。
垂直是两直线相交的特殊情况。注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a。
垂足:两条互相垂直的直线的交点叫垂足。垂直时,一定要用直角符号表示出来。
---性质:(1)过直线外一点有且只有一条直线与已知直线垂直(2)垂线段最短
----点到直线的距离:就是点到直线的垂线段的长度。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
二、平行线
1.平行线:在同一平面内,不相交的两条直线。-----特点:没有交点,平行线永不相交。
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。
3.三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角
形成方式-------两条直线被第三条直线所截(这两条直线不一定平行,)
特别注意:① 三角形的三个内角均互为同旁内角;
② 同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。
名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)
4.平行线的判定方法----(1)同位角相等,两直线平行(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行(4)如果两条直线分别与第三条直线平行,那么这两条直线也互相平行。一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。
5.平行线的性质-------(1)两直线平行,同位角相等
(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补
6.两条平行线间的距离-----就是两条平行线间的垂线段的长度。
一个结论:平行线间的距离处处相等。
三、命题
判断一件事情的语句叫命题。命题包括“题设”和“结论”两部分,可写成“如果„„那么„„”的形式。
1.2.3.四、平移
1.2.定义:一个图形沿着一定的方向平行移动。特点----(1)平移后图形的形状、大小不变,位置改变 定义:判断一件事情的语句 组成----(1)题设(如果„„)(2)结论(那么„„)分类----(1)真命题(2)假命题
(2)对应点所连接的线段平行(或在同一直线上),对应角相等。
特征:发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等); 对应点
之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质
描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。
第三篇:相交线、平行线知识点总结
相交线、平行线知识点总结
1、三个距离:
(1)两点之间的距离:__________________
(2)点到直线的距离:__________________
(3)平行线间的距离:__________________
2、几种角:
(1)余角:∠1+∠2=_______°补角:∠1+∠2=_______°
(2)邻补角:∠1+∠2=_____°(有一条公共边和公共顶点)
(3)对顶角
(4)锐角、直角、钝角、平角
(5)同位角、内错角、同旁内角
3、可以用来推理的依据:
(1)同角的余角_______,同角的补角_________。
(2)对顶角________;邻补角的意义.(3)角平分线的意义
(4)垂直的定义;垂直的意义
(5)互补的意义;互余的意义
(6)判定平行线的三个方法:_________________________________________________________________________________
(7)平行线的三个性质:___________________________________________________________________________
(8)垂直于同一条直线的两条直线___________
(9)平行于同一条直线的两条直线__________
(10)同底等高的三角形面积________
(11)平行线间的距离处处相等
(12)等量代换;等式的性质
(13)垂直平分线(中垂线)的意义
4、几个基本性质
(1)两点之间,__________最短
(2)垂线段最短
(3)两条直线相交,有________个交点
(4)经过一点有________条直线垂直于已知直线
(5)经过直线外的一点有_______条直线平行于已知直线.
第四篇:相交线与平行线知识点自整理
相交线与平行线
线线关系:相交(有交点)、平行(无交点)
相交线:
1、两角:邻补角→两角相加180°。两角关系互补。
2、对顶角:两角相等
3、相交与垂直的关系:垂直是夹角为90°的相交(相交线→垂线)
1)性质:同一平面内过一点有且只有一条垂线
2)与已知直线垂直连接直线外一点与直线上各点的所有线段中,垂线段最短。(垂线段最
短。)
过渡:三角:同位角、内错角、同旁内角、1、三线八角:两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁 内角。如图,直线a,b被直线l所截①∠1与∠5在截线l的同侧,同在被截直线a,b的上方,b ②∠5与∠3在截线l的两旁(交错),在被截直线a,b之间(内)叫做同位角(位置相同)同位角是“A”型 且交错)内错角是“Z”型
③∠5与∠4在截线l的同侧,在被截直线a,b之间(内),叫做同旁内角。同旁内角是“U”型。
平行线
公理:经过直线外一点,有且只有一条直线与这条直线平行。
公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行
判定
1:同位角相等,两直线平行 2:内错角相等,两直线平行
3:同旁内角互补,两直线平行。性质
1:两直线平行,同位角相等;
2:两直线平行,内错角相等;
3:两直线平行,同旁内角互补。
做题:命题、定理、证明
说出来的叫命题,验证说出来对不对的过程叫做证明,对的命题叫真命题,错的叫假命题。公理是普遍承认的。由公理作为基础的真命题叫做定理。
证明过程:
证明:
∵题干有用信息(已知)
∴。。。(凭什么)
∴。。。(又凭什么)
又∵。。。(已知)←引入第二个条件
题型:相交→求角度(计算)证垂直(证明)平行→证平行(判定)
求角度:三角形内角和180°;互补(180°);互余(90°);平行线性质(相等和互余)证明:
垂直:求角度→90度;有垂直导角(平行线性质)
平行:平行线判定。
第五篇:相交线与平行线难题
第一讲 相交线与平行线
【难题巧解点拨】
例1求证三角形的内角和为180度。
例2如图,AB、CD两相交直线与EF、MN两平行直线相交,试问一共可以得到同旁内角多少对?
B
C
例
3例3已知:∠B+∠D+∠F=360o.求证:AB∥EF.例4如图,∠1+∠2=∠BCD,求证AB∥DE。
A B
CDA E
【典型热点考题】
例1 如图2—15,∠1=∠2,∠2+∠3=180°,AB∥CD吗? AC∥BD吗?为什么?
例2平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点.怎样安排才能办到?
例3已知直线a、b、c在同一平面内,a∥b,a与c相交于p,那么b与c也一定相交.请说明理由.
一、选择题
1.图2—17中,同旁内角共有
()
A.4对B.3对C.2对D.1对
2、光线a照射到平面镜CD上,然后在平面镜AB和CD之
间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠3=75°,则∠2=()A.50°B.55°C.66° D.65°
3、如图为中华人民共和国国旗上的一个五角星,同学们再熟悉不过了,那么它的每个角的度数为()
000045303640ABC
4、如图3,把长方形纸片沿EF折叠,使D,C分别落在D,C的位置,若∠EFB65,则∠AED等于()
A.
5.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么()
A.8角均相等B.只有这一对内错角相等
B.55C.
60D.
5C.凡是内错角的两角都相等,凡是同位角的两角也相等 D.凡是内错角的两角都相等,凡是同位角的两角都不相等
6、如图,在ABC中,已知AB=AC,点D、E分别在AC、AB上,且BD=BC,AD=DE=EB,那么A的度数是(B)
A、30°B、45°C、35°D、60°
C7、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上
平行前进,则这两次拐弯的角度可以是()A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐40°
8、已知:如图,AB//CD,则图中、、三个角之间的数量关系为().A、++=360B、++=180C、+-=180D、--=90
9、如图,把三角形纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是().(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=2∠1+∠2(D)3∠A=2(∠1十∠2)
二、填空题
1、用等腰直角三角板画∠AOB45,并将三角板沿OB方向平移到如图17所示的虚线处后绕点M逆时针方向旋转22,则三角板的斜边与射线OA的夹角为______
2、如图2—30,直线CD、EF相交于点A,则在∠
1、∠
2、∠
3、∠
4、∠B和∠C这6个角中.
(1)同位角有______;(2)内错角有______;(3)同旁内角有_____。
3、如图2—31,直线a、b被直线AB所截,且AB⊥BC,(1)∠1和∠2是_______角;
(2)若∠1与∠2互补,则∠1-∠
3=_______.4、如图,图中有_________对同位角,_________对内错角,_________对同旁内角.
(千万别遗漏)
三、解答题
1、已知:如图2—33,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求证:DC∥AB.
2、在3×3的正方形ABCD的方格中,1+2+3+4+5+6+7+8+9之和是多少度? 解:
3、已知:如图,CD//EF,∠1=65,∠2=35,求∠3与∠4的度数.解:
4、如图,哪些条件能判定直线AB∥
CD?
A B
C D5、如图,已知DE、BF平分∠ADC和∠ABC,∠ABF=∠AED,∠ADC=∠ABC,由此可推得图中哪些线段平行?并写出理由.
6、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.(3)由(1)、(2),请你猜想:当两平面镜a、3=°时,可以使任何射到平面镜a经过平面镜a、b的两次反射后,入射光线
b的夹角∠
a1m
上的光线m,m与反射光线
n平行.你能说明理由吗?
b
n
7、潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB与射出的光线CD平行吗?为什么?
8、如图:已知ABC与DEF是一副三角板的拼图,A,E,C,D在同一条线上.(1)、求证EF//BC ;(2)、求1与2的度数