七年级数学平行线经典证明题

时间:2019-05-13 15:10:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学平行线经典证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学平行线经典证明题》。

第一篇:七年级数学平行线经典证明题

经典平行线经典证明题

一、选择题:

1.如图,能与构成同旁内角的角有()

A. 5个 B.4个 C. 3个 D. 2个

2.如图,AB∥CD,直线MN与AB、CD分别交于点E和点F,GE⊥MN,∠1=130°,则∠2等于()

A.50°B.40°C.30°D.65°

3.如图,DE∥AB,∠CAE=1∠CAB,∠CDE=75°,∠B=65°则∠AEB是()

3A.70°B.65°C.60°D.55°

4.如图,如果AB∥CD,则、、之间的关系是()

A、1800B、1800

C、1800D、2700

5.如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()

A.180°B.360°C.540°D.720°

6.如图,OP∥QR∥ST,则下列各式中正确的是()

A、∠1+∠2+∠3=180°B、∠1+∠2-∠3=90°

C、∠1-∠2+∠3=90°D、∠2+∠3-∠1=180°

7.如图,AB∥DE,那么∠BCD于()

A、∠2-∠1B、∠1+∠2C、180°+∠1-∠2D、180°+∠2-2∠

1二、填空题:

8.把一副三角板按如图方式放置,则两条斜边所形成的钝角_______度.

9.求图中未知角的度数,X=_______,y=_______.10.如图,AB∥CD,AF平分∠CAB,CF平分∠ACD.(1)∠B+∠E+∠D=________;(2)∠AFC=________.11.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________. 12.如图,∠BAC=90°,EF∥BC,∠1=∠B,则∠

DEC=________.13.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于14.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=____

三、计算证明题:

15.如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.

16..如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?

17.已知:如图23,AD平分∠BAC,点F在BD上,FE∥AD交AB于G,交CA的延长线于E,求证:∠AGE=∠E。

18.如图,AB∥DE,∠1=∠ACB,∠CAB=

∠BAD,试说明:AD∥BC.219.已知:如图22,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥AB.20.如图,已知∠D = 90°,∠1 = ∠2,EF⊥CD,问:∠B与∠AEF是否相等?若相等,请说明理由。

21.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C.

22.已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。

23.已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD∥BC.24.如图,直线l与m相交于点C,∠C=∠β,AP、BP交于点P,且∠PAC=∠α,∠PBC=∠γ,求证:∠APB=α+∠β+∠γ.

25.如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明

.26.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=200,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.DC F

图③ 图①

27、如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

28、已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

29、如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

E B A P

C D Q F

图11

第二篇:平行线证明题

平行线证明题

直线AB和直线CD平行

因为,∠AEF=∠EFD.所以AB平行于CD

内错角相等,两直线平行

EM与FN平行因为EM是∠AEF的平分线,FN是∠EFD的平分线,所以角MEF=1/2角AEF,角EFN=1/2角EFD

因为,∠AEF=∠EFD,所以角MEF=角EFN

所以EM与FN平行,内错角相等,两直线平行

2第五章相交线与平行线试卷

一、填空题:

1、平面内两条直线的位置关系可能是或。

2、“两直线平行,同位角相等”的题设是,结论是。

3、∠A和∠B是邻补角,且∠A比∠B大200,则∠A=度,∠B=度。

4、如图1,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=400,则∠BOD=

0。

5、如图2,如果AB‖CD,那么∠B+∠F+∠E+∠D=0。

6、如图3,图中ABCD-是一个正方体,则图中与BC所在的直线平行的直线有条。

7、如图4,直线‖,且∠1=280,∠2=500,则∠ACB=0。

8、如图5,若A是直线DE上一点,且BC‖DE,则∠2+∠4+∠5=0。

9、在同一平面内,如果直线‖,‖,则与的位置关系是。

10、如图6,∠ABC=1200,∠BCD=850,AB‖ED,则∠CDE0。

二、选择题:各小题只有唯一一个正确答案,请将正确答案的代号填在题后的括号内

11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是()

A、700B、600C、500D、40012、已知:如图8,下列条件中,不能判断直线‖的是()

A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180013、如图9,已知AB‖CD,HI‖FG,EF⊥CD于F,∠1=400,那么∠EHI=()

A、400B、450C、500D、55014、一个角的两边分别平行于另一个角的两边,则这两个角()

A、相等B、相等或互补C、互补D、不能确定

15、下列语句中,是假命题的个数是()

①过点p作直线BC的垂线;②延长线段MN;③直线没有延长线;④射线有延长线。

A、0个B、1个C、2个D、3个

16、两条直线被第三条直线所截,则()

A、同位角相等B、内错角相等

C、同旁内角互补D、以上结论都不对

17、如图10,AB‖CD,则()

A、∠BAD+∠BCD=1800B、∠ABC+∠BAD=1800

C、∠ABC+∠BCD=1800D、∠ABC+∠ADC=180018、如图11,∠ABC=900,BD⊥AC,下列关系式中不一定成立的是()

A、AB>ADB、AC>BCC、BD+CD>BCD、CD>BD19、如图12,下面给出四个判断:①∠1和∠3是同位角;②∠1和∠5是同位角;③∠1和∠2是同旁内角;④∠1和∠4是内错角。其中错误的是()

A、①②B、①②③C、②④D、③④

三、完成下面的证明推理过程,并在括号里填上根据

21、已知,如图13,CD平分∠ACB,DE‖BC,∠AED=820。求∠EDC的度数。

证明:∵DE‖BC(已知)

∴∠ACB=∠AED()

∠EDC=∠DCB()

又∵CD平分∠ACB(已知)

∴∠DCB=∠ACB()

又∵∠AED=820(已知)

∴∠ACB=820()

∴∠DCB==410()

∴∠EDC=410()

22、如图14,已知AOB为直线,OC平分∠BOD,EO⊥OC于O。试说明:OE平分∠AOD。

解:∵AOB是直线(已知)

∴∠BOC+∠COD+∠DOE+∠EOA=1800()

又∵EO⊥OC于O(已知)

∴∠COD+∠DOE=900()

∴∠BOC+∠EOA=900()

又∵OC平分∠BOD(已知)

∴∠BOC=∠COD()

∴∠DOE=∠EOA()

∴OE平分∠AOD()

四、解答题:

23、已知,如图16,AB‖CD,GH是相交于直线AB、EF的直线,且∠1+∠2=1800。试说明:CD‖EF。

24、如图18,已知AB‖CD,∠A=600,∠ECD=1200。求∠ECA的度数。

五、探索题(第27、28题各4分,本大题共8分)

25、如图19,已知AB‖DE,∠ABC=800,∠CDE=1400。请你探索出一种(只须一种)添加辅助线求出∠BCD度数的方法,并求出∠BCD的度数。

26、阅读下面的材料,并完成后面提出的问题。

(1)已知,如图20,AB‖DF,请你探究一下∠BCF与∠B、∠F的数量有何关系,并说明理由。

(2)在图20中,当点C向左移动到图21所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?

(3)在图20中,当点C向上移动到图22所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?

(4)在图20中,当点C向下移动到图23所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?

分析与探究的过程如下:

在图20中,过点C作CE‖AB

∵CE‖AB(作图)

AB‖DF(已知)

∴AB‖EC‖DF(平行于同一条直线的两条直线平行)

∴∠B+∠1=∠F+∠2=1800(两直线平行,同旁内角互补)

∴∠B+∠1+∠2+∠F=3600(等式的性质)

即∠BCF+∠B+∠F=3600

在图21中,过点C作CE‖AB

∵CE‖AB(作图)

AB‖DF(已知)

∴AB‖EC‖DF(平行于同一条直线的两条直线平行)

∴∠B=∠1,∠F=∠2(两直线平行,内错角相等)

∴∠B+∠F=∠1+∠2(等式的性质)

即∠BCF=∠B+∠F

直接写出第(3)小题的结论:(不须证明)。

由上面的探索过程可知,点C的位置不同,∠BCF与∠B、∠F的数量关系就不同,请你仿照前面的推理过程,自己完成第(4)小题的推理过程。

第三篇:平行线证明题

一次函数的应用 专题练习题

1.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.

2.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数

3.如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.

4.如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,∠BDC=∠BCD,∠1=∠2,求∠3的度数.

5.如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70°,求∠EDF的度数.

6.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.

7.【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC= ;若∠A=n°,则∠BEC= .

【探究】

(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC= ;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请

说明理由;

(3)如图④,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)

第四篇:平行线证明题

平行线

平行线的判定总共有六种:

1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.4.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(平行公理的推论,也叫平行的传递性)

5.如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.(平行线的判定公理的推论)

6.平行线的定义:在同一平面内,不相交的两条直线

平行线的性质;

1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

4.在同一平面内的两线平行并且不在一条直线上的直线。

辅助线:一般会画平行线,来确定角的关系!

1.如图1,延长BC,过C作CE∥AB

2.如图2,过A作EF∥AB

3.如图3,过A作AD∥BC。利用同旁内角之和为180度

4.如图4,在BC边上任取一点D,作DE∥AB,DF∥AC。

[一]、平行线的判定

一、填空

1.如图1,若A=3,则∥;若2=E,则∥;

若+= 180°,则∥.c d A a E a 52 23 b B b C A B图4 图3 图1 图2

2.若a⊥c,b⊥c,则ab.

3.如图2,写出一个能判定直线l1∥l2的条件:.

4.在四边形ABCD中,∠A +∠B = 180°,则∥().

5.如图3,若∠1 +∠2 = 180°,则∥。

6.如图4,∠

1、∠

2、∠

3、∠

4、∠5中,同位角有;

(第1页,共3页)

内错角有;同旁内角有. 7.如图5,填空并在括号中填理由:

(1)由∠ABD =∠CDB得∥();(2)由∠CAD =∠ACB得∥();

(3)由∠CBA +∠BAD = 180°得∥()A D Dl1 2 14 5 3l2 C B C

图7 图5 图6

8.如图6,尽可能多地写出直线l1∥l2的条件:.

9.如图7,尽可能地写出能判定AB∥CD的条件来:. 10.如图8,推理填空:

(1)∵∠A =∠(已知),A∴AC∥ED();

(2)∵∠2 =∠(已知),2∴AC∥ED();(3)∵∠A +∠= 180°(已知),B D C∴AB∥FD();

图8

(4)∵∠2 +∠= 180°(已知),∴AC∥ED();

二、解答下列各题

11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.

D

F

B图9

12.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说

明理由.

C

图10

13.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

E

B

[二]、平行线的性质

(第2页,共3页)

P

F

Q 图1

1D

一、填空

1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.C

F 1 BB ED DF

B C A B D

图1 图2 图4 图

33.如图3所示

(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.

(3)若∠A +∠= 180°,则AE∥BF.

4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.

5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.

E C

l

1A2 F B F G

l2D F D C C A G

图6 图7 图8图

56.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.

二、解答下列各题

9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.A CF

D 10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.

图9

E

B C

图10 11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)

(第3页,共3页)

E

图1

1B

C D

12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.

求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.

BA

D C F

25.如图,△ABC中,∠B=∠ACB,CD是高,求证.∠BCD=

∠A. 2

6.已知,如图,△ABC中,∠C>∠B,AD⊥BC于D,AE平分∠BAC. 求证.∠DAE=

(∠C-∠B). 2

例2.已知,△ABC中,AD是高,E是AC边上一点,BE与AD交于点F,∠ABC=45°,∠BAC=75°,∠AFB=120°.求证:BE⊥AC.

19、已知如图,O是四边形ABCD的两条对角线的交点,过点O作OE∥CD,交AD于E,作OF∥ BC,交AB于F,连接EF。求证:EF∥BD

(第4页,共3页)

第五篇:七年级_平行线的相关证明题3.6

平行线的相关证明题

一、选择题:

1.如图,能与构成同旁内角的角有()

A. 5个 B.4个 C. 3个 D. 2个

2.如图,AB∥CD,直线MN与AB、CD分别交于点E和点F,GE⊥MN,∠1=130°,则∠2等于()

A.50°B.40°C.30°D.65°

3.如图,DE∥AB,∠CAE=

1∠CAB,∠CDE=75°,∠B=65°则∠AEB是()

3A.70°B.65°C.60°D.55°

4.如图,如果AB∥CD,则19991、、之间的关系是()9

A、1800B、1800

C、1800D、2700

5.如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()

A.180°B.360°C.540°D.720°

6.如图,OP∥QR∥ST,则下列各式中正确的是()

A、∠1+∠2+∠3=180°B、∠1+∠2-∠3=90°

C、∠1-∠2+∠3=90°D、∠2+∠3-∠1=180°

7.如图,AB∥DE,那么∠BCD于()

A、∠2-∠1B、∠1+∠2C、180°+∠1-∠2D、180°+∠2-2∠

1二、填空题:

8.把一副三角板按如图方式放置,则两条斜边所形成的钝角_______度.

9.求图中未知角的度数,X=_______,y=_______.10.如图,AB∥CD,AF平分∠CAB,CF平分∠ACD.(1)∠B+∠E+∠D=________;(2)∠AFC=________.11.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________. 12.如图,∠BAC=90°,EF∥BC,∠1=∠B,则∠

DEC=________.13.如图,把长方形ABCD沿EF对折,若∠1=50,则∠AEF的度数等于14.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=____

三、计算证明题:

15.如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.

16..如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?

17.已知:如图23,AD平分∠BAC,点F在BD上,FE∥AD交AB于G,交CA的延长线于E,求证:∠AGE=∠E。

18.如图,AB∥DE,∠1=∠ACB,∠CAB=

∠BAD,试说明:AD∥BC.219.已知:如图22,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥

AB.20.如图,已知∠D = 90°,∠1 = ∠2,EF⊥CD,问:∠B与∠AEF是否相等?若相等,请说明理由。

21.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C.

22.已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。

23.已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD∥

BC.25.如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明

.21、(8分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.

D

F

B G

26.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.D C F

EA

C20、(10分)观察如图所示中的各图,寻找对顶角(不含平角):

(1)如图a,图中共有___对对顶角;(2)如图b,图中共有___对对顶角;(3)如图c,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?

(5)若有2008条直线相交于一点,则可形成 多少对对顶角?

7、如图1所示,下列说法不正确的是()

A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段AC C.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段

A

A

D

A

B

C

B

C

B

D

DC

(1)(2)(3)

8、如图1所示,能表示点到直线(线段)的距离的线段有()

A.2条B.3条C.4条D.5条

9、下列说法正确的有()

①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个

10、如图2所示,AD⊥BD,BC⊥CD,AB=a cm, BC=b cm,则BD的范围是()A.大于a cmB.小于b cm

C.大于a cm或小于b cmD.大于b cm且小于a cm

11、到直线L的距离等于2cm的点有()

A.0个B.1个C.无数个D.无法确定

12、点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为

()

A.4cmB.2cmC.小于2cmD.不大于2cm

下载七年级数学平行线经典证明题word格式文档
下载七年级数学平行线经典证明题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学下册《相交线与平行线》证明题

    七年级数学下册《相交线与平行线》测试题一、选择题:(每题2.5分,共35分)1.下列所示的四个图形中,1和2是同位角的是 ...112221③②①A. ②③B. ①②③C. ①②④D. ①④ ④B342D2.如右图......

    初一平行线证明题

    初一平行线证明题用反证法A平面垂直与一条直线,设平面和直线的交点为pB平面垂直与一条直线,设平面和直线的交点为Q假设A和B不平行,那么一定有交点。设有交点R,那么做三角形pQRpR......

    平行线证明题训练

    . 如图2所示,已知∠1=∠2,AC平分∠DAB。 (1)CB∥DA成立吗?可以的话,请说明原因。(2)DC∥AB.直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ。.如图,AB∥DF,DE......

    平行线证明题讲义

    上海市重点中学七年级数学精讲精练平行线证明题1.已知:如图,AE是一条直线,O是AE上一点,OB、OD分别是∠AOC、∠EOC的平分线。求证:OB⊥OD第1题图2.如图,AD⊥BC,EF⊥BC,∠AMD=104°, ∠B......

    七年级下数学平行线相交线必背证明题

    七年级下数学平行线相交线必背证明题一、平行线之间的基本图1、如图已知,AB∥CD.AF,CF分别是EAB、 ECD的角平分线,F是两条角平分线的交点; E F B1求证:FAEC. 2D2、已知AB//CD,此......

    七年级数学 三角形 证明题

     三角形与平行线相交线的套用1.已知:四边形ABCD中, AC、BD交于O点, AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.求证:AD=BC 多次证明三角形全等得出角或边相等2.(1)已知:如图,在AB、A......

    平行线的性质证明题

    平行线的性质证明题这是判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。也可以简单的说成:1.同位角相等两直线平行两条直线被第三条直线所截,如果同位......

    很好的平行线证明题

    1.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD∴∠2=.又∵∠1=∠2,∴∠1=∠3.∴AB∥.∴∠BAC+= 180°.又∵∠BAC=70°,∴∠AGD=.2.如图,∠BAF46,∠ACE136,CE⊥CD.问CD∥......