第一篇:平行四边形的性质定理和判定定理及其证明
4.1平行四边形的性质定理和判定定理及其证明
姓名:成绩:
1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC, AD=BCB.AB=DC,AD=BC C.AB∥DC,AD=BC
D.OA=OC,OD=OB
2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和
3B.3和
2C.4和
1D.1和
4E 3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180.
A
D.4个
第3题图
A.1个B.2个C.3个
4.能够判别一个四边形是平行四边形的条件是()
A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行 5.下列条件中不能确定四边形ABCD是平行四边形的是()
A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC 6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()
A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88° 7.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()
A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180° 8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()
A.1个B.2个C.3个D.4个
二、填空题
5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是
(添加一个条件即可)
6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,∠D=_________。7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。
如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF
为平行四边形.
D
第5题图
C
C
A第7题图
9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD
相交于M、N,你认为OM、ON有什么关系?为什么?
10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明
BE=CF。
A
12.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?
13.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由
.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?
若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).
第二篇:有关平行四边形的性质,定理的证明
第五课时有关平行四边形的性质,定理的证明
一. 本章节知识点
1、掌握平行四边形的性质定理“平行四边形的两组对边分别相等、平行四边形的对角线互相平分、平行四边形的对角相等”。
2、会应用平行四边形的上述定理解决简单几何问题。
3、通过探索平行四边形的性质,进一步发展学生的逻辑推理能力及条理的表达能力。
4、在以平行四边形为载体为证明线段(或角)相等的问题中,•通常证明这些线段(或角)
所在的四边形是平行四边形,再由平行四边形的性质来证明,而不要仅仅停留在证三角形全等上.在学习时,应熟练掌握平行四边形的性质及判别方法,注意图形变换的一些特征,善于从折叠、旋转等几何变换中寻求已知条件.
二.典型例题
例 1.已知:如图,在中,那么OE、OF是否相等,说明理由.
交于点O,过O点作EF交AB、CD于E、F,分析观察图形,证明:
在,∴
∴,∴,则________,ABCD的周长=______.中,交于O,∴,从而可说明例2.O是ABCD对角线的交点,的周长为59,若与的周长之差为15,则______,解答:ABCD中,.∴的周长
∴
.在ABCD中,的周长-
.∴的周长
∴
∴
ABCD的周长
与的周长的差转化为两条
说明:本题考查平行四边形的性质,解题关键是将线段的差.例3.已知:如图,ABCD的周长是,由钝角顶点D向AB,BC引两条高DE,DF,且
.求这个平行四边形的面积
.解答:设
.∵ 四边形ABCD为平行四边形,∴
.①
又∵四边形ABCD的周长为36,∴∵
∴
∴
②
.,解由①,②组成的方程组,得∴
.说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.例4如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE•与DF
有怎样的位置关系和数量关系?并对你的猜想加以证明.
解析猜想:BE∥DF,BE=DF.
证法一:如图1,∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2.又∵CE=AF,∴△BCE≌△DAF.∴BE=DF,∠3=∠4,∴BE∥DF.
证法二:如图2,连结BD,交AC于点O,连结DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO.又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE//DF. 三.习题演练
一、选择题
1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()
A.AD∥BC, AD=BCB.AB=DC,AD=BCC.AB∥DC,AD=BC
D.OA=OC,OD=OB
2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和
3B.3和
2C.4和
1D.1和
4E 第2 题图
3.如图,在平行四边形ABCD中,AC,BD相交于点O
.下列结论中正确的个数有()
结论:①OAOC,②BADBCD,③ACBD,④BADABC180. A.1个
B.2个
C.3个
A第3题图
C
D.4个
4.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)(5,0)(2,3),则顶点C的坐标是()A.(3,7)
二、填空题
B.(5,3)
C.(7,3)
D.(8,2)
x
5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是(添加一个条件即可).
6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______, ∠D=_________。
7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。8.如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC12,BD10,ABm,那么m的取值范围是___________。
三.课后作业
AD
C
第5题图
C
A第7题图
9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD相交于M、N,你认为OM、ON有什么关系?为什么?
10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明BE=CF。
四.参考答案
一、选择题C、B、C、C
二、填空题5.答案不唯一,可以是:ABCD或AD∥BC等。6.130,507.16cm8.1m1
1三、解答题 9.解:OM=ON
证明:∵平行四边形ABCD
∴OB=OD , AB∥CD∴∠ABD=∠CDB
又∵∠BOM=∠DON ∴△BOM≌△DON∴OM=ON。
10.解:∵BD平分∠ABC
∴∠ABD=∠DBC
∵DE∥BC,∴∠EDB=∠DBC ∴∠ABD=∠EDB ∴BE=ED
∵DE∥BC,EF∥AC
∴四边形EFCD是平行四边形 ∴CF=ED ∴BE=CF。
第三篇:平行四边形判定定理教案
18.1.2平行四边形的判定
(第一课时)
一、教学目标
(一)知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
(二)能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
二、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).
三、课时安排
2课时
四、教具学具准备
投影仪,投影胶片,常用画图工具
五、师生互动活动设计
复习引入,构造逆命题,画图分析,讨论证法,巩固应用.
六、教学步骤
【复习提问】
1.平行四边形有什么性质?学生回答教师板书
2.将以上性质定理分别用命题的形式叙述出来. 【引入新课】
用投影仪打出上述命题的逆命题.
上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).
【讲解新课】
1.平行四边形的判定
我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?
如图1,在四边形 中,如果,那么 .
∴ .
同理 .
∴四边形 是平行四边形,因此得到:
平行四边形判定定理1:两组对角分别相等的四边形是平行四边形. 类似地,我们还会想到,两组对边相等的四边形是平行四边形吗? 如图1,如果,那么
,,连结
,则△
≌△
得到
,则四边形 是平行四边形.
由此得到:
平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.
(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).
我们再来证明下面定理
平行四边形判定定理3:对角线互相平分的四边形是平行四边形.
(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)
2.判定定理与性质定理的区别与联系
判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.
例1 已知:且 是
对角线 上两点,并,如右图.
是平行四边形.
是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用
交
于
利用判定定理3简单.
求证:四边形
分析:因为四边形定义或判定定理1、2都可以,还可以连结
证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).
【总结、扩展】
1.小结:(投影打出)
(1)本堂课所讲的判定定理有
(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.
2.思考题
教材P144B.3
八、布置作业
教材P142中7;P143中8、9、10
九、板书设计
十、随堂练习
1.下列给出了四边形
中
、、的度数之比,其中能判定四边形 是平行四边形的是()
A.1:2:3:4 B.2:2:3:3
C.2:3:2:3 D.2:3:3:2 2.在下面给出的条件中,能判定四边形 是平行四边形的是()
A.,B.,C.,D.,3.已知:在 中,点
求证:四边形 是平行四边形.、在对角线上,且
.
第四篇:32.2平行四边形的判定定理及其证明(范文)
滦县三中九年级数学学科第一学期导学案
课题: 32.2平行四边形的判定定理及其证明主备人:主审人:使用时间: 2013.11.25编号:
五.学以致用:
有一块平行四边形的玻璃片ABCD,不小心碰碎了,聪明的你想想看有没有办法把原来的平行四边形重新画出来.A
B
C
六.能力提升:
已知:如图,E、F分别是ABCD的边AD、BC上的点,DE=BF,G、H在BD上,BG=DH.求证:四边形EGFH是
.D
H
F
C
变式:如图,G、H是
ABCD的对角线BD上的点,BG=DH,直线EF∥AB,分别交AD、BC与点E、F 当直线EF从AB出发,沿A到D方向平移时,是否存在某一时刻使四边形EGFH是平行四边形,存在,说出EF的位置,不存在,说明理由.E
D
H
F
七.能力测评: 1.已知:如图,在ABCD中,BE=DF 求证:四边形DEBF是
2变式.在1的条件下,延长BF、DE,分别交AD、CB的延长线与H、G求证:FH =EG
E
3变式.在1的条件下,连接AF、CE.求证EF与GH互相平分
E
第五篇:三角形性质和判定定理
等腰三角形:
定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。性质:
1.等腰三角形的两条腰相等; 2.等腰三角形的两个底角相等; 3.4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。判定:
1.有两条边相等的三角形是等腰三角形;
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
等边三角形:
定义:三边都相等的三角形是等边三角形,也叫正三 角形。性质:
1.的垂直平分线都是它的对称轴;
2.60°。判定:
1.三条边都相等的三角形是等边三角形; 2.有一个角是60°的等腰三角形是等边三角形; 3.有两个角是60°的三角形是等边三角形。
直角三角形:
定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。性质:
1.直角三角形的两个余角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中30°角所对的直角边等于斜边的一半;4.a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 判定:
1.有一个角是直角的三角形是直角三角形; 2..有两个角互余的三角形是直角三角形;
3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;
4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形。
角平分线定理:在角的平分线上的点到这个角的两边的距离相等
逆定理:到一个角的两边的距离相同的点,在这个角的平分线上
中垂线定理:线段垂直平分线上的点到这条线段两个
端点的距离相等
逆定理:到一条线段两个端点距离相等的点,在这
条线段的垂直平分线上定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边
5外角2三角形的一个外角大于任何一个和它不相
邻的内角三角形内角和定理三角形三个内角的和等于180° 4外角1三角形的一个外角等于和它不相邻的两个
内角的和
全等的判定:
6边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
7角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
8推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
9边边边公理(SSS)有三边对应相等的两个三角形
全等
10斜边、直角边公理(HL)有斜边和一条直角边对应
相等的两个直角三角形全等