第一篇:初中数学分式的乘除法说课稿
所谓说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。下面,小编为大家分享初中数学分式的乘除法说课稿,希望对大家有所帮助!
各位评委:
下午好!今天我说课的题目是《分式的乘除法(第1课时)》,选用是人教版的教材。根据新课标的理念,对于这节课,我将以教什么,怎样教,为什么这样教为思路,从说教材、说学情、说教法学法、说教学过程、说板书等五个方面加以说明。
一、说教材
(一)教材的地位和作用
本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。因此,这节课在整个的初中数学的学习中起着承上启下的过渡作用。
(二)教学目标分析
根据新课标的要求和这节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,我制定了如下三维教学目标:
1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。
(三)教学重难点
本着课程标准,在充分理解教材的基础上,我确立了以下的教学重点、难点:
教学重点:运用分式的乘除法法则进行运算。
教学难点:分子、分母为多项式的分式乘除运算。
下面,为了讲清重点难点,使学生能达到这节课的教学目标,我再从教法和学法上谈谈:
二、说学情
1.学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移。
2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。
三、说教法学法
(一)说教法
教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合这节课的内容特点和学生的年龄特征,这节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。让学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
(二)说学法
从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为这节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生“学会”还要让学生“会学”
四、说教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈这节课的教学过程安排:
(一)提出问题,引入课题
俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1求容积的高是 ,(引出分式乘法的学习需要)。
问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。
解后总结概括:
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)
(学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
【分式的乘除法法则 】
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为:
设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破这节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)(3)(4)与第3题的(2)
师生活动:教师 出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1.这节课我们学习了哪些知识?
2.在知识应用过程中需要注意什么?
3.你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。
(六)布置作业
教科书习题6.2 第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对这节课内容的一个反馈,选做题是对这节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
五、说板书设计
在这节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。
第二篇:初中数学 9.3《分式的乘除法》约分教案
第4课 9.3分式的乘除法(1约分)
教学目标
1.使学生明确分式的约分概念和理论依据,掌握约分方法;
2.通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法.
教学重点和难点
重点:分式约分的方法.
难点:分式约分时分式的分子或分母中的因式的符号变化.
教学过程设计
一、导入新课
问:下面的等式中右式是怎样从左式得到的?这种变换的理论根据是什么?
2答:(1)式中的左边分式的分子与分母都除以2ab,得到右式,这里a≠0,b≠0.(2)式中的左边分式的分子与分母都除以(x+y),得到右式,这里(x+y)≠0.这种变换的根据是分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
本性质.
问:什么是分数的约分?约分的方法是什么?约分的目的是什么?
答:把一个分数化为与它相等,但是分子、分母都比较小的分数,这种运算叫做约分.对于一个分数进行约分的方法是:把分子、分母都除以它们的公约数(1除外).约分的目的是把一个分数化为既约分数.分式的约分和分数的约分类似,下面讨论分式的约分.
二、新课
我们观察:
(1)中左式变为右式,是把左式中的分子与分母都除以2ab得到的,它是分式的分子与分母的公因式.
(2)中左式变为右式,是把左式中的分子与分母都除以它们的公因式(x+y)而得到的.
像(1),(2)中分式的运算就是分式的约分.即把一个分式的分子与分母的公因式约去,叫做分式的约分.
一个分式的分子与分母没有公因式时,这个分式叫做最简分式.
把一个分式进行约分的目的,是使这个分式变为最简分式.
为了把上述分式约分,应该先确定分式的分子与分母的公因式,那么分式的分子与分母的公因式是什么?
答:因为分式的分子与分母都是单项式,取分子、分母中相同因式的最低次幂和分子、分母的系数的最大公约数,把它们的积作为这个分式的分子与分母的公因式.
指出:分子或分母的系数是负数时,一般先把负号移到分式本身的前边.这就同时改变了分式本身与分子或分母的符号,所以分式的值不变.
例2 约分:
分析:(1),(2)的分子、分母都是多项式,并且都能分解因式,可以先分解因式,再分别确定分子与分母的公因式.
请同学说出解题思路.
答:分式的分子、分母都是多项式,可以先分别因式分解,约分,把分式化为最简分式,再求值.
当x=45时,请同学概括分式约分的步骤.
答:
1.如果分式的分子、分母是单项式,约去分子、分母的系数的最大公约数和相同因式的最低次幂.
2.如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的公因式.
3.当分式的分子或分母的系数是负数时,应先把负号提到分式的前边.
请同学思考一个问题:将分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?
答:因为所给的分式都是有意义的,也就是说,分母的值不等于零.而分式的分子与分母的公因式一定是分式的分母的一个因式,根据分式的基本性质,约分后分式的值不变.
三、课堂练习
1.约分:
2.指出下列分式运算中的错误,并把它改正.
四、小结
把一个分式的分子与分母的公因式约去,叫做分式的约分.
分式进行约分的目的是要把这个分式化为最简分式.
如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
分式约分中注意正确运用乘方的符号法则,如
x-y=-(y-x),(x-y)=(y-x),(x-y)=-(y-x).
五、作业
1.约分:
233
2.约分:
3.先约分,再求值:
课堂教学设计说明
1.分式的约分和分数的约分有很多类似之处,在导入分式约分时,先充分复习分数约分的概念、方法、目的,引导学生用类比的方法学习分式的约分,从中促使学生发现新旧知识间的联系与发展,让学生在类比、概括中主动获取知识.通过讨论例题,引导学生概括分式约分的步骤.
2.学生在学习分式的约分时,不仅应掌握约分的方法,还应理解运算的算理.要求学生能知其然,也得知其所以然.教学设计中提出了一些问题,启发学生思考、回答.如提出“分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?”,从而使学生进一步明确分式约分的理论依据是分式的基本性质.
3.在课堂练习题的设计中,把学生在学习分式约分中常出现的错误展现在他们面前,引导学生独立思考、互相讨论、共同分析,辨别正确与错误,在真理和谬误中比较、鉴别是与非,以培养学生的批判性思维.
第三篇:《分式的乘除法》说课稿
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材
1、教材内容:
我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、教材地位:
分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、教学目标
知识目标:
(1)、理解分式的乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:
(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:
(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
第四篇:分式乘除法 教学设计
教学设计
一、备课标
(一)内容标准:
经历运算与建模等过程,体会数学知识之间的联系。能进行简单的分式乘除运算。学会独立思考,体会数学的基本思想和思维方式。
(二)数学思想、方法(十大核心概念):
分式是分数的“代数化”,本节课通过类比小学的分数乘除法,通过观察猜想、归纳明晰等思维方法获得分式的乘除运算法则,培养学生的代数化归意识,发展合情推理能力,十大核心概念本节重点培养的是运算能力、符号意识、推理能力。
二、备重点、难点
(一)教材分析:本节课是北师大版义务教育教科书八年级下册第五章第二节,属于“数与代数”领域中数与式的整式与分式部分。本节课共一课时。分式是代数式的重要组成部分,分式的乘除运算法则是代数式恒等变形的重要依据,分式乘除中约分化简是上一章《因式分解》的典型应用,同时又是学习有关比例知识的基础,所以本节课起着承上启下的作用。
(二)教学重点、难点:
本节课首先通过类比分数的乘除运算,通过观察、猜想、交流,归纳,获得分式乘除法则,然后在理解法则的基础上学会简单分式的乘除运算,所以确定: 重点:掌握分式的乘除法则,会进行简单分式的乘除运算。难点 : 分子、分母中含有多项式的分式乘除运算,分式的乘方运算。
三、备学情
(一)学习条件和起点能力分析: 1.学习条件分析
(1)必要条件:学生已经学习了分数的乘除运算法则,具备了分数的运算能力,会分解因式,会整式乘法运算,会列代数式,会应用分式的基本性质约分。
(2)支持性条件:本节课充分类比分数运算及运算法则,通过让学生充分观察、类比、猜想获得分式乘除法则,在参与探索法则的活动中发展合情推理能力,感悟数学学习的一般方法。2.起点能力分析
学生在小学学习了分数的运算法则,能进行分式的乘除运算,在上节课学习了分式的基本性质并能进行约分运算,分式乘除法与分数乘除法没有根本性的区别,学生借助已有基础通过合情推理,探索出分式乘除法则,在前面又学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基
础。
(二)学生可能达到的程度和存在的普遍性问题:
在分数计算基础上,探索分式运算法则、及对于分子、分母是单项式的分式乘除法,在上节课分式约分运算基础上,学生能将算式对照乘除法的法则进行运算,在运算结果中,如果不是最简分式往往忘记约分,因式分解在分式约分中起到重要作用,但学生因式分解还不十分熟练,会造成运算上的困难,针对这一问题,采取的策略是:先复习约分运算,为本节课学习扫清障碍,类比分数运算结果需要化成最简分数,提出分式运算结果也要化成最简分式,可结合例题师生共同分析。
四、教学目标
1.类比分数的乘除运算法则,探索并归纳分式的乘除运算法则。
2.掌握分式乘除法法则,会进行简单分式的乘除运算,发展学生的运算能力。3.经历探索分式乘除运算法则的过程,培养学生的类比、化归的数学思想。4.能解决一些与分式乘除运算有关的简单实际问题。
五、教学过程(一)构建动场: 活动一:把下列各式约分
m216x215xy(1))(2)2(3)
3m12x2x120x2y设计意图:通过复习约分,让学生复习分式的基本性质,以及利用分式的基本性质进行约分,为本节课的分式乘除法的学习奠定基础。
(二)自主学习,交流探究 活动二:观察猜想:
24245252,, 35357979242525525959,, 353434797272猜一猜:bdbd ; acac你能总结分式乘除法的法则吗?先独立思考 然后与同位交流。
分式的乘除法的法则: 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.符号表示:adadadacac bcbcbcbdbd 设计意图: 让学生通过观察运算,小组讨论交流,并与分数的乘除法的法则类比,明白字母代表数,让学生自己总结出分式的乘除法的法则。
(an想一想:分式的乘方:nab)=bn
活动三:知识运用 例题1: 6a2y2(1)8ya21x23a2(2)a2a2a(3)(-y)·(-x2
32y3)设计意图:通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,增强学生代数推理的能力与应用意识。需要给学生强调的是:
1、分式运算的结果通常要化成最简分式或整式,2、当分式的分子、分母中有多项式时,要注意添括号,能分解因式的要先分解因式;
3、如果分子与分母有公因式,可以先约分再计算.4、如果分子(或分母)的符号是负号,应把负号提到分式的前面 建模一
分式乘法运算步骤:
1.用分子的积做积的分子,分母的积做积的分母;
2.化简最后结果。最后的计算结果必须是最简分式或整式。
细节决定成败(注意)
1.①当分式的分子、分母中有多项式时,能分解因式的要先分解因式; ②如果分子与分母有公因式,可以先约分再计算.2.如果分子(或分母)的符号是负号,应把负号提到分式的前面; 达标一
计算:(1)abbx2x26x9a2(2)x3x24)2x2y10ab2(34a325a2bx2y2(4)(3b33b2)·(2a2)设计意图:巩固所学知识,发展学生的运算能力,及时反馈。例题2 1)2xy26y2a1a2(x(2)a24a41a24
设计意图:巩固分数除法运算法则,发展学生的运算能力。
建模二
除法的运算步骤:
1.先把除法转化成乘法。(一变一倒)2.再用乘法运算步骤运算.达标二 计算:
(1)3ab6ab(2)(a2a)aa1
x22xx24m524(3)x26x9x23x(4)nnmmn4 设计意图:巩固所学知识,发展运算能力。
(三)综合建模
本节课你学到哪些知识?学到哪些方法?还有哪些疑问?
(四)当堂检测
1.下列分式运算,结果正确的是()
23A.m4n4macad2a4a23x3x3n5m3n B bdbc C.aba2b2 D 4y4y3
m1m1的结果是()mm211A.m B.C.m1 D.mm12.化简3.计算(1)
(3)
4.王强到超市买了a千克香蕉,用了m元钱,又买了b千克鲜橙,•用了n元钱,,鲜橙单价是香蕉单价的多少倍?
机动题 1. 化简x2.(xyx2)÷5xy(2)y15x2
a1a22a1(4)
2a4
a2x1xy等于()A.1 B.xy C.D.xyxyxy ________. xy1ab322ab2)3.÷(2·
abab22(ab)
(五)作业布置:
必做题:习题5.3 1、2题 机动题:习题5.3 3、4题
第五篇:分式的乘除法练习题
初中八年级数学上册(人教版)教案及习题
分式乘除法
一、选择题
1.下列等式正确的是()
1y2-22A.(-1)=-1
B.(-1)=1
C.2x=D.xy=2
2xx0
-
1-22.下列变形错误的是()
4x3y22A.3642xyy12x3(ab)24x3(ab)C.27(ab)9ab23ax4cd等于()3.2cd(xy)3B.1 3(yx)3x2y(a1)2xD.223y9xy(1a)32b2A.-
B.b2x
23x2a224.若2a=3b,则3b等于()
A.1
B.2b23a2b2x
C.D.- 223x8cd2
3C.2D.6x2y2axay2225.使分式axay(xy)的值等于5的a的值是()
A.5
B.-5
C.5D.-
15(x1)(x3)6.已知分式(x1)(x3)有意义,则x的取值为()
A.x≠-1
B.x≠3 C.x≠-1且x≠3
D.x≠-1或x≠3 7.下列分式,对于任意的x值总有意义的是()
x5x1A.2
B.2
x1x1x21C.8x
D.2x 3x2|m|12mm的值为零,则m取值为()8.若分式A.m=±1
B.m=-1
C.m=1
D.m的值不存在
Page 1 of 10 初中八年级数学上册(人教版)教案及习题
9.当x=2时,下列分式中,值为零的是()
A.x22x
4B.x9x23x2 C.x2
D.x2 x110.每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()
A.nxmy元
xy
B.mxny元
xyC.1xymn元
D.()元
2mnxy11.下列各式的约分正确的是()
2(ac)2A.3(ac)3
B.abcabc2322cab2
C.ab2abab221ab
D.2ac14acc2a2
a22a1a12M中,M的值为()12.在等式aaA.a
B.a1
C.a
D.a1
213.小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是()
1b13a26a
A.B.bab22aa(b)(xy)2
111xyxyC. D.12(yx)1yx
22x1amn,,1,3x3abab14.下列式子: 中是分式的有()个
A、5
B、4
C、3
15.下列等式从左到右的变形正确的是()
D、2
bb1bb22A、aa
1B、aa
4A、2a
m21B、m
1aba2b
C、b22C、m
1bbm D、aam
m1D、1m 16.下列分式中是最简分式的是()
17.下列计算正确的是()
mnA、11111mmm1m4m31nmnnmmn
B、m
C、D、Page 2 of 10
初中八年级数学上册(人教版)教案及习题
3m22n3)()2n3m的结果是()18.计算(nA、3m
nB、3m
2nC、3m
2nD、3m
xy19.计算xyxy的结果是()
xyC、xy
xyD、xy A、1
B、0
m2mnmn的结果是()20.化简mA、n
m2B、mn
n2C、mn
nD、m
21.下列计算正确的是()
01(1)1(1)
1A、B、3a2C、3532a
2D、(a)(a)a
x8k8x77x22.如果关于x的方程无解,那么k的值应为()
A、1
B、-1
C、
1D、9 23.甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x天完成,则根据题意列出的方程是()
111111111111A、xx56
B、xx56
C、xx56
D、xx56
二、填空题
2ba21.计算:=________. a4b2c15x42.计算:÷(-18ax3)=________.
ab3.若代数式x1x3有意义,则x的取值范围是________. x2x4Page 3 of 10
初中八年级数学上册(人教版)教案及习题
4.化简分式abxaby得________. 22xyaa2b25.若=5,则=________.
bab12a2b2x3,xy24x2y,6.下列各式:中,是分式的为________. 2a5x37.当x________时,分式
x12有意义. x8x1的值为1. 2x18.当x=________时,分式9.若分式xy=-1,则x与y的关系是________.
2xy10.当a=8,b=11时,分式
a2的值为________.
a2ba11、分式2a,当a__ ___时,分式的值为0;当a___ ___时,分式无意义,当a__ ____时,分式有意义
x2y212、xyx.
2a1a,2,293aa9a6a913、的最简公分母是_ _ ___________.
a1a1b14、ab_____________.
ababba15、_____________. 1()216、2_____________.
18、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x千米/时,则所列
Page 4 of 10
初中八年级数学上册(人教版)教案及习题
方程为___________________
x2x19.将分式x2x化简得x1,则x满足的条件是_____________。
三、解答题
1.x取何值时,下列分式有意义:(1)x22x3
(2)6(x3)|x|12
(3)x6x21
2.(1)已知分式2x28x2,x取什么值时,分式的值为零?
x2(2)x为何值时,分式23x9的值为正数?
Page 5 of 10 初中八年级数学上册(人教版)教案及习题
3.x为何值时,分式
12x1与23x2的值相等?并求出此时分式的值.
4.求下列分式的值:(1)11aa8
其中a=3.
(2)xyxy2
其中x=2,y=-1.
5.计算:
3ab2(1)2cd4c2d33a2b4
(2)m26m9m24m23m
Page 6 of 10
初中八年级数学上册(人教版)教案及习题
6.计算:
xy(1)(xy-x)÷
xy2
x32x24xx22x4(2)2
x2x4x4
3ab2x2(3)x9a2b
a21(4)a2a22a
3ab2b2(4)
3a x2y2x25)
xyxy2x2y Page 7 of 10(初中八年级数学上册(人教版)教案及习题
4x24xyy24m24m14m2122(4xy)22xym1m1
(7)(6)
2x2y(x(8)y)2
1(x2x1(10)x1)x2
(m2)5(n)4(mn)4(9)nm
11)(2ab2c3)2(a2b)3
Page 8 of 10
(初中八年级数学上册(人教版)教案及习题
31(1)2(2)4(1)1(031(12)2103)
(13)24
11xyxyxyx2(14)y2
60
Page 9 of 10
初中八年级数学上册(人教版)教案及习题
7.先化简,再求值
(1)x293x39x21x26x9x23x,其中x=-3.
(2)xyx4y41x2y2,其中x=8,y=11.
x22x(x12x1x1(3)
x21x1),其中3
Page 10 of 10