高数二下知识点总结

时间:2019-05-15 13:03:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高数二下知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高数二下知识点总结》。

第一篇:高数二下知识点总结

考试之前我们及时的总结,罗列,能够帮助我们梳理知识点,有效应对考试,小编为大家整理了高二语文下册期末知识点总结,欢迎大家阅读。

第一版块:古诗文阅读与鉴赏(7题33分)

1。名句名篇默写题与文学常识题

知识范围:课标建议的60个背诵篇目;文学常识以中国古代作家为主及60个背诵篇目名称、作家及朝代。

默写时要注意:

(1)今年高考是四选三选默,选择最有把握的几句来填写,千万不要多默。

(2)字迹一定要工整清楚,严禁潦草,切勿卖弄书法。(建议拿到试卷就先填写默写内容)

(3)要求“一字不差”。如默写内容印象不深,可先记得几个字默几个字,后面想起来了再默。

注意诗歌中有固定含义的意象:

⒈离别类:双鲤、尺素(远方来信),月亮(思乡或团圆),鸿雁(游子思乡怀亲或羁旅伤感),寒蝉(悲凉),柳(喻离别留念或代故乡),芳草(离愁别恨),鹧鸪鸟(叫声似“行不得也哥哥”,指旅途艰辛或离愁别绪),南浦(送别之地),芭蕉(离情别绪),燕(惜春或恋人思念或物是人非的变迁,或传书叙离情或游子漂泊),关山(思家),长亭短亭(送别),阳关曲(送别的歌声)。

⒉情爱类:莲(音同“怜”表达爱情),红豆(男女爱情或友谊),红叶(传情之物)。

⒊人格类:菊花(清高),梅花(不怕摧残敢为人先或保持冰清玉洁),松(傲霜斗雪坚守节操),⒋悲情类:梧桐(象征悲凉),乌鸦(衰败荒凉),杜鹃鸟或子规(象征凄凉哀伤或思家思归),⒌其它类:昆山玉(人才),折桂(科举及第),采薇(隐居生活),南冠(囚犯),柳营(军营)。东篱(高雅,洁身自好)

■第一种类型:分析主旨型(含情感及寄寓义)

诗歌就题材(内容)的不同,可分以下10类,据此可了解诗歌主旨:

⑴咏史怀古诗:凭吊古迹古人来借古讽今;或感慨昔盛今衰,今不如昔;或渴望像古人一样建功立业。(写古迹古人,多用典故)

⑵托物言志诗:不直接表露思想情感,而是运用比喻象征拟人手法把自己的理想和人格融入一物象中。(常有松、竹、梅等意象)

⑶边塞征战诗:或抒写报国立功壮志;或征夫思家的思念;或对开边拓土穷兵黩武的统治者的讽刺和规劝。

⑷羁旅思乡诗:写游子漂泊的羁旅愁苦;或所见所闻所感触发的思念故乡的乡愁。(常有月、柳、雁、书信及梦境幻觉的描写

⑸送别留念诗:或表达别时留恋;或表达别后思念;或表白理想信念;或表达彼此勉励。

⑹田园山水诗:借写山林田园的闲适美好,表达对世俗与现实的不满、向往宁静平和的归隐思想,或表达自己遗世独立,保持节操品性的情怀。

⑺即事感怀诗:或忧国忧民;或反映离乱;或渴望建功立业;或仕途失意闺中怀人;或讴歌河山。

⑻闺怨闺愁诗:或表达对戍边丈夫的思念,或写春光(青春)易逝,光阴不再的感伤,或表达对战争的厌恶。(我们认为不会考,但是课本中有,我们还是要了解一点。)

■第二种类型:分析意境类(意境=意象+情感)

常式问:这首诗歌营造了一个怎样的意境氛围?

变式问:这首诗歌为我们展现了一幅怎样的画面?表达了诗人什么样的思想?

这首诗歌描写了什么样的景物?抒发了诗人怎样的情怀?

A。意境(氛围)特点术语有:

孤寂冷清、恬静优美、雄浑壮阔、萧瑟凄凉,恬静安谧,雄奇优美生机勃勃,富丽堂皇,肃杀荒寒瑰丽雄壮,虚幻飘渺凄寒萧条繁华热闹等。

B。思想感情术语:

迷恋、忧愁、惆怅、寂寞、伤感、孤独、烦闷、恬淡、闲适、欢乐、仰慕、激愤,坚守节操、忧国忧民等。

■第三种类型:表达技巧类(着眼于全篇整体或局部)

常式问:这首诗歌采用了何种写作手法?

变式问:这首诗歌运用了怎样的艺术手法(技巧)?或:诗人是怎样来抒发自己的情感的?

第二篇:高数知识点总结

高数重点知识总结

1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(yax),三角函数(y=sinx),常数函数(y=c)

2、分段函数不是初等函数。

x2xxlim1

3、无穷小:高阶+低阶=低阶

例如:limx0x0xxsinx4、两个重要极限:(1)lim1x0x(2)lim1xex01x1lim1e xxg(x)x经验公式:当xx0,f(x)0,g(x),lim1f(x)xx0exx0limf(x)g(x)

例如:lim13xex01xx03xlimxe3

5、可导必定连续,连续未必可导。例如:y|x|连续但不可导。

6、导数的定义:limx0f(xx)f(x)f'(x)xxx0limf(x)f(x0)f'x0

xx07、复合函数求导:dfg(x)f'g(x)g'(x)dx

例如:yxx,y'2x2x1 2xx4x2xx1

18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx x2y21例如:解:法(1),左右两边同时求导,2x2yy'0y'x ydyx法(2),左右两边同时微分,2xdx2ydydxy9、由参数方程所确定的函数求导:若yg(t)dydy/dtg'(t),则,其二阶导数:dxdx/dth'(t)xh(t)d(dy/dx)dg'(t)/h'(t)dyddy/dxdtdt 2dxdxdx/dth'(t)

210、微分的近似计算:f(x0x)f(x0)xf'(x0)例如:计算 sin31

11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:ysinx(x=0x是函数可去间断点),ysgn(x)(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f(x)sin(x=0是函数的振荡间断点),y数的无穷间断点)

12、渐近线:

水平渐近线:ylimf(x)c

x1x1(x=0是函xlimf(x),则xa是铅直渐近线.铅直渐近线:若,xa斜渐近线:设斜渐近线为yaxb,即求alimxf(x),blimf(x)ax

xxx3x2x1例如:求函数y的渐近线

x2113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

14、极值点:令函数y=f(x),给定x0的一个小邻域u(x0,δ),对于任意x∈u(x0,δ),都有f(x)≥f(x0),称x0是f(x)的极小值点;否则,称x0是f(x)的极大值点。极小值点与极大值点统称极值点。

15、拐点:连续曲线弧上的上凹弧与下凹弧的分界点,称为曲线弧的拐点。

16、拐点的判定定理:令函数y=f(x),若f“(x0)=0,且x0;x>x0时,f“(x)<0或xx0时,f“(x)>0,称点(x0,f(x0))为f(x)的拐点。

17、极值点的必要条件:令函数y=f(x),在点x0处可导,且x0是极值点,则f'(x0)=0。

18、改变单调性的点:f'(x0)0,f'(x0)不存在,间断点(换句话说,极值点可能是驻点,也可能是不可导点)

19、改变凹凸性的点:f”(x0)0,f''(x0)不存在(换句话说,拐点可能是二阶导数等于零的点,也可能是二阶导数不存在的点)

20、可导函数f(x)的极值点必定是驻点,但函数的驻点不一定是极值点。

21、中值定理:

(1)罗尔定理:f(x)在[a,b]上连续,(a,b)内可导,则至少存在一点,使得f'()0

(2)拉格朗日中值定理:f(x)在[a,b]上连续,(a,b)内可导,则至少存在一点,使得f(b)f(a)(ba)f'()

(3)积分中值定理:f(x)在区间[a,b]上可积,至少存在一点,使得bf(x)dx(ba)f()

a22、常用的等价无穷小代换:

x~sinx~arcsinx~arctanx~tanx~ex1~2(1x1)~ln(1x)1cosx~12x2111tanxsinx~x3,xsinx~x3,tanxx~x3263

23、对数求导法:例如,yxx,解:lnyxlnx1y'lnx1y'xxlnx1 y24、洛必达法则:适用于“

0”型,“”型,“0”型等。当0xx0,f(x)0/,g(x)0/,f'(x),g'(x)皆存在,且g'(x)0,则limf(x)f'(x)limg(x)xx0g'(x)

如,xx0exsinx10excosx0exsx1ilimlimlim x0x20x02x0x02225、无穷大:高阶+低阶=高阶

例如,26、不定积分的求法

(1)公式法

(2)第一类换元法(凑微分法)

23x12x3limnx2x5x22xlim4 5x2x3(3)第二类换元法:哪里复杂换哪里,常用的换元:1)三角换元:a2x2,可令xasint;x2a2,可令xatant;x2a2,可令xasect

2)当有理分式函数中分母的阶较高时,常采用倒代换x

27、分部积分法:udvuvvdu,选取u的规则“反对幂指三”,剩下的作v。分部积分出现循环形式的情况,例如:excosxdx,sec3xdx

1t

第三篇:高数知识点总结(上册)

高数知识点总结(上册)函数:

绝对值得性质:(1)|a+b||a|+|b|

(2)|a-b||a|-|b|

(3)|ab|=|a||b|

a|a|(b0)(4)|b|=|b|

函数的表示方法:

(1)表格法

(2)图示法

函数的几种性质:

(1)函数的有界性(2)函数的单调性

(3)函数的奇偶性(4)函数的周期性 反函数:

(3)公式法(解析法)

1yf(x)yf(x)存在,且是单定理:如果函数在区间[a,b]上是单调的,则它的反函数值、单调的。

基本初等函数:

(1)幂函数

(3)对数函数

(5)反三角函数 复合函数的应用 极限与连续性: 数列的极限:

(2)指数函数(4)三角函数

定义:设xn是一个数列,a是一个定数。如果对于任意给定的正数(不管它多么小),总存在正整数N,使得对于n>N的一切xn,不等式

limxnxn极限,或称数列收敛于a,记做naxna都成立,则称数a是数列xn的,或xna(n)

收敛数列的有界性: 定理:如果数列xn收敛,则数列xn一定有界

推论:(1)无界一定发散(2)收敛一定有界(3)有界命题不一定收敛

函数的极限:

定义及几何定义 函数极限的性质:

limf(x)Axx0(1)同号性定理:如果,而且A>0(或A<0),则必存在x0的某一邻域,当x在该邻域内(点x0可除外),有f(x)0(或f(x)0)。(2)如果xx0limf(x)A,且在x0的某一邻域内(xx0),恒有f(x)0(或f(x)0),则A0(A0)。

limf(x)limf(x)(3)如果xx0存在,则极限值是唯一的

(4)如果存在,则在f(x)在点x0的某一邻域内(xx0)是有界的。无穷小与无穷大:

注意:无穷小不是一个很小的数,而是一个以零位极限的变量。但是零是可作为无穷小xx0f(x)的唯一的常数,因为如果f(x)0则对任给的0,总有,即常数零满足无穷小的定义。除此之外,任何无论多么小的数,都不满足无穷小的定义,都不是无穷小。无穷小与无穷大之间的关系:

1(1)如果函数f(x)为无穷大,则f(x)为无穷小

1(2)如果函数f(x)为无穷小,且f(x)0,则f(x)为无穷大

具有极限的函数与无穷小的关系:

(1)具有极限的函数等于极限值与一个无穷小的和

(2)如果函数可表为常数与无穷小的和,则该常数就是函数的极限 关于无穷小的几个性质:

定理:

(1)有限个无穷小的代数和也是无穷小(2)有界函数f(x)与无穷小a的乘积是无穷小

推论:

(1)常数与无穷小的乘积是无穷小(2)有限个无穷小的乘积是无穷小 极限的四则运算法则:

定理:两个函数f(x)、g(x)的代数和的极限等于它们的极限的代数和 两个函数f(x)、g(x)乘积的极限等于它们的极限的乘积

极限存在准则与两个重要极限:

准则一(夹挤定理)

设函数f(x)、g(x)、h(x)在xx0的某个邻域内(点x0可除外)满足条件:

(1)g(x)f(x)h(x)(2)xx0xx0limg(x)A,xx0limh(x)A

则 准则二

单调有界数列必有极限

定理:如果单调数列有界,则它的极限必存在 limf(x)A

重要极限:

sinx1x0x(1)lim

1cosx12x02 x(2)

lim11xlim(1)elim(1x)xex(3)x或x0

无穷小阶的定义: 设、为同一过程的两个无穷小。

lim

(1)如果0,则称是比高阶的无穷小,记做o(),则称是比低阶的无穷小

(2)如果lim

(3)如果limc(c0,c1),则称与是同阶无穷小 1,则称与是等阶无穷小,记做~

(4)如果lim几种等价无穷小:

对数函数中常用的等价无穷小: x0时,ln(1x)~x(x0)

loga(1x)~1x(x0)lna

三角函数及反三角函数中常用的等价无穷小: x0时,sinx~xtanx~x1cosx~12x2arcsinx~xarctanx~x

指数函数中常用的等价无穷小: x0时,ex1~xax1exlna1~lna

xn 二项式中常用的等价无穷小:

x0时,(1x)1~axan1x1~函数在某一点处连续的条件:

limf(x)f(x0)xx0 由连续定义可知,函数f(x)在点x0处连续必须同时满足下列三个条件:(1)f(x)在点x0处有定义

limf(x)xxf(x)xx00(2)当时,的极限存在(3)极限值等于函数f(x)在点x0处的函数值f(x0)

如果函数f(x)在点x0处连续,由连续定义可知,当xx0时,f(x)的极限一定存在,反极限与连续的关系:

之,则不一定成立

函数的间断点:

分类:第一类间断点(左右极限都存在)第二类间断点(有一个极限不存在)连续函数的和、差、积、商的连续性: 定理:如果函数f(x)、g(x)在点x0处连续,则他们的和、差、积、商(分母不为零)在点x0也连续 反函数的连续性: 定理:如果函数yf(x)在某区间上是单调增(或单调减)的连续函数,则它的反函数x(y)也在对应的区间上是单调增(或单调减)的连续函数

最大值与最小值定理:

值 推论:如果函数f(x)在闭区间a,b上连续,则f(x)在a,b上有界

定理:设函数f(x)在闭区间a,b上连续,两端点处的函数值分别为f(a)A,f(b)B(AB),而是介于A与B之间的任一值,则在开区间(a,b)内至少有一点定理:设函数f(x)在闭区间a,b上连续,则函数f(x)在闭区间a,b上必有最大值和最小介值定理:

,使得

f()(ab)

推论(1):在闭区间上连续函数必能取得介于最大值与最小值之间的任何值

推论(2):设函数f(x)在闭区间a,b上连续,且f(a)f(b)0(两端点的函数值异号),则在(a,b)的内部,至少存在一点,使f()0

导数与微分 导数: 定义:y'limx0f(xx)f(x)x

导数的几何定义:函数在图形上表示为切线的斜率

函数可导性与连续性之间的表示:

如果函数在x处可导,则在点x处连续,也即函数在点x处连续

一个数在某一点连续,它却不一定在该点可导 据导数的定义求导:(1)y'|xx0limf(x0x)f(x0)ylimx0xx0x

(2)y'|xx0limxx0f(x)f(x0)xx0

f(xx)f(x)x(3)y'|xx0limx0基本初等函数的导数公式:

(1)常数导数为零(c)'0

nn1(x)'nx(2)幂函数的导数公式

(3)三角函数的导数公式

(sinx)'cosx

(cosx)'sinx 1(cotx)'csc2x2(secx)'secxtanx sinx

(cscx)'cscxcotx

(tanx)'1sec2x2cosx

(4)对数函数的导数公式:(5)指数函数的导数公式:

xx(e)'e(6)

(logax)'11logaexxlna

(ax)'axlna

(7)反三角函数的导数公式:

1x2

1(arctanx)'1x2(arcsinx)'1

(arccosx)'11x2 1(arccotx)'1x2

函数和、差、积、商的求导法则: 法则一(具体内容见书106)

(uv)'u'v'

(uv)'u'v'

函数乘积的求导法则: 法则二(具体内容见书108)

(uv)'u'vuv'

uu'vuv'()'vv2 函数商的求导法则: 法则三(具体内容见书109)

复合函数的求导法则:(定理见书113页)

反函数的求导法则:

反函数的导数等于直接函数导数的倒数 基本初等函数的导数公式:(见书121页)

d2yddy()2dxdx 高阶导数:二阶和二阶以上的导数统称为高阶导数 dx求n阶导数:(不完全归纳法)

(sinx)(n)sin(xn)(cosx)(n)cos(xn)2

2隐函数的导数:(见书126页)

对隐函数求导时,首先将方程两端同时对自变量求导,但方程中的y是x的函数,它的导dy'ydx数用记号(或表示)

对数求导法:先取对数,后求导(幂指函数)

x(t)(t)y(t)由参数方程所确定的函数的导数:

dydydtdy1'(t)dxdtdxdtdx'(t)dt

微分概念:

函数可微的条件

如果函数f(x)在点x0可微,则f(x)在点x0一定可导 函数f(x)在点x0可微的必要充分条件是函数f(x)在点x0可导 dyf'(x0)x

函数的微分dy是函数的增量y的线性主部(当x0),从而,当

x很小时,有ydy

通常把自变量x的增量x称为自变量的微分,记做dx。即于是函数的微分可记为

dyf'(x)'dyf(x)dx,从而有dx

基本初等函数的微分公式: 几个常用的近似公式:

f(x)f(0)f'(0)x

n

1x11xn

sinxx(x用弧度)

e21x

tanxx(x用弧度)

ln(1x)x

中值定理与导数应用

罗尔定理:如果函数f(x)满足下列条件

(1)在闭区间a,b上连续(2)在开区间a,b内具有导数

'(3)在端点处函数值相等,即f(a)f(b),则在a,b内至少有一点,使f()0

拉格朗日中值定理:如果函数f(x)满足下列条件

(1)在闭区间a,b上连续

(2)在开区间a,b内具有导数,则在a,b内至少有一点,使得f(b)f(a)f'()(ba)定理几何意义是:如果连续曲线yf(x)上的弧AB除端点处外处处具有不垂直于x轴的切线,那么,在这弧上至少有一点c,使曲线在点c的切线平行于弧AB 推论:如果函数f(x)在区间a,b内的导数恒为零,那么f(x)在a,b内是一个常数

柯西中值定理:如果函数f(x)与F(x)满足下列条件

(1)在闭区间a,b上连续(2)在开区间a,b内具有导数

‘F(3)(x)在a,b内的每一点处均不为零,则在a,b内至少有一点使得f(b)f(a)f'()'F(b)F(a)F()

罗尔定理是拉格朗日中值定理的特例,柯西中值定理是拉格朗日中值定理的推广 洛必达法则:(理论根据是柯西中值定理)

00未定式

1、xa情形

定理:如果(1)当xa时,f(x)与(x)都趋于零

'''f(x)(x)(2)在点a的某领域(点a可除外)内,与都存在且(x)0

f'(x)f(x)f(x)lim'limlimxaxa(x)xa(x)(3)(x)存在(或为),则极限存在(或为),且f'(x)lim'xa(x)=

在一定条件下通过分子、分母分别求导数再求极限来确定未定式的值的方法称为洛必达法则

2、x情形

推论:如果(1)当x时,f(x)与(x)都趋于零

'''f(x)(x)(2)当|x|>N时,与都存在且(x)0

f'(x)f(x)f(x)lim'limlimx(x)x(x)x(3)(x)存在(或为),则极限存在(或为),且f'(x)lim'x(x)=

未定式

1、xa情形

如果(1)xa时,f(x)与(x)都趋于无穷大

'''f(x)(x)(2)在点a的某领域(点a可除外)内,与都存在且(x)0

f'(x)f(x)f(x)lim'limlimxa(x)xa(x)xa(x)(3)存在(或为),则则极限存在(或为),且=f'(x)lim'xa(x)

2、x情形 推论:如果(1)x时,f(x)与(x)都趋于无穷大

'''f(x)(x)(2)当|x|>N时,与都存在且(x)0

f'(x)f(x)lim'limxa(x)xa(x)(3)存在(或为),则则极限存在(或为),且f'(x)f(x)lim'limxa(x)xa(x)=

0注意:

1、洛必达法则仅适用于0型及型未定式

2、当泰勒公式(略)

迈克劳林公式(略)函数单调性的判别法: f'(x)limxa'(x)(x)不存在时,不能断定

f(x)xa(x)(x)lim不存在,此时不能应用洛必达法则

必要条件:设函数f(x)在a,b上连续,在a,b内具有导数,如果f(x)在a,b上单调增

''a,bf(x)0f加(减少),则在内,((x)0)

充分条件:设函数f(x)在a,b上连续,在a,b内具有导数,'a,bf(1)如果在内,(x)0,则f(x)在a,b上单调增加 'a,bf(2)如果在内,(x)0,则f(x)在a,b上单调减少

函数的极值及其求法

极值定义(见书176页)极值存在的充分必要条件

'xxf(x)f00必要条件:设函数在点处具有导数,且在点处取得极值,则(x)0

函数的极值点一定是驻点

导数不存在也可能成为极值点

'f驻点:使(x)0的点,称为函数f(x)的驻点

充分条件(第一):设连续函数f(x)在点x0的一个邻域(x0点可除外)内具有导数,当x由小增大经过x0时,如果 'f(1)(x)由正变负,则x0是极大点

'f(2)(x)由负变正,则x0是极小点 'f(3)(x)不变号,则x0不是极值点

';;xf(x)0ff(x)0充分条件(第二):设函数在点0处具有二阶导数,且,(x0)0

;;f(1)如果(x0)0,则f(x)在x0点处取得极大值;;f(2)如果(x0)0,则f(x)在x0点处取得极小值

函数的最大值和最小值(略)

曲线的凹凸性与拐点: 定义:设f(x)在a,b上连续,如果对于a,b上的任意两点x1、x2恒有f(x1x2f(x1f(x2))22,则称f(x)在a,b上的图形是(向上)凹的,反之,图形是(向上)凸的。

判别法:

定理:设函数f(x)在a,b上连续,在(a,b)内具有二阶导数

;;f(a,b)(1)如果在内(x0)0,那么f(x)的图形在a,b上是凹的;;f(a,b)(2)如果在内(x0)0,那么f(x)的图形在a,b上是凸的

拐点:凸弧与凹弧的分界点称为该曲线的拐点。

不定积分

原函数:如果在某一区间上,函数F(x)与f(x)满足关系式: F'(x)f(x)或dF(x)f(x)dx,则称在这个区间上,函数F(x)是函数f(x)的一个原函数 结论:如果函数f(x)在某区间上连续,则在这个区间上f(x)必有原函数

定理:如果函数F(x)是f(x)的原函数,则F(x)C(C为任意常数)也是f(x)的原函数,且f(x)的任一个原函数与F(x)相差为一个常数 不定积分的定义:

f(x)dx定义:函数f(x)的全体原函数称为f(x)的不定积分,记做

(f(x)dx)'f(x)d(f(x)dx)f(x)dx不定积分的性质: 性质一:

f及'

(x)dxf(x)C或df(x)f(x)C

性质二:有限个函数的和的不定积分等于各个函数的不定积分的和。即

[f1(x)f2(x)fn(x)]dxf1(x)dxf2(x)dxfn(x)dx

性质三:被积函数中不为零的常数因子可以提到积分号外面来,即

kf(x)dxkf(x)dx(k为常数,且k0 kdxkxC基本积分表:(1)(k是常数)

xa1xdxC(a1)a1(2)

a 1dxln|x|Cx(3)

x

e(4)xdxexC

axadxC(a0,a1)lna(5)

(6)sinxdxcosxC

(7)cosxdxsinxC

12dxsecxdxtanxC2(8)cosx

1dxcsc2xdxcotxCsecxtanxdxsecxC2(9)sinx(10)

(11)cscxcotxdxcscxC

(12)

11x2dxarcsinxC

(13)11x2dxarctanxC

'第一类换元法(凑微分法)f[(x)](x)dxF[(x)]C

tanxdxln|cosx|C

cotxdxln|sinx|C

第二类换元法:变量代换

被积函数若函数有无理式,一般情况下导用第二类换元法。将无理式化为有理式 基本积分表添加公式:

结论:

22ax如果被积函数含有,则进行变量代换xasint化去根式

22如果被积函数含有xa,则进行变量代换xatant化去根式

22xa如果被积函数含有,则进行变量代换xasect化去根式

分部积分法:

对应于两个函数乘积的微分法,可推另一种基本微分法---------分部积分法 udvuvvdu

分部积分公式

三角函数指数函数

1、如果被积函数是幂函数与

令u等于幂函数 的积,可以利用分部积分法

对数函数

2、如果被积函数是幂函数与反三角函数的积,可使用分部积分法

对数函数 令u=反三角函数

3、如果被积函数是指数函数与三角函数的积,也可用分部积分法。定积分

定积分的定义

定理:如果函数f(x)在[a,b]上连续,则f(x)在[a,b]上可积

定理:如果函数在[a,b]上只有有限个第一类间断点,则f(x)在[a,b]上可积 定积分的几何意义:

bf(x)dx

1、在[a,b]上f(x)0,这时a的值在几何上表示由曲线yf(x)、x轴及二直线x=a、x=b所围成的曲边梯形的面积

2、在[a,b]上f(x)0,其表示曲边梯形面积的负值

3、在[a,b]上,f(x)既取得正值又取得负值 几何上表示由曲线yf(x)、x轴及二直线x=a、x=b所围成平面图形位于x轴上方部分的面积减去x轴下方部分的面积 定积分的性质:

性质

一、函数和(差)的定积分等于他们的定积分的和(差),即

aaa

性质

二、被积函数中的常数因子可以提到积分号外面,即

b[f(x)g(x)]dxf(x)dxg(x)dxkf(x)dxkf(x)dxabbbba(k是常数)

性质

三、如果将区间[a,b]分成两部分[a,c]和[c,b],那么

baf(x)dxf(x)dxf(x)dxacbcb、性质

四、如果在[a,b]上,f(x)1,那么af(x)dxdxbaab

f(x)dx0性质

五、如果在[a,b]上,f(x)0,那么a 性质

六、如果在[a,b]上,f(x)g(x),那么

bbaf(x)dxg(x)dxab

性质

七、设M及m,分别是函数f(x)在区间[a,b]上的最大值及最小值,则

f(x)dx

m(b-a)aM(b-a)(a

八、积分中值定理

bab ……估值定理

如果函数f(x)在闭区间[a,b]上连续,那么在积分区间[a,b]上至少有一点,使得  f(x)dxf()(ba)微积分基本公式

积分上限的函数:(x)f(t)dtax(axb)

性质:如果函数f(x)在区间[a,b]上连续,那么积分上限的函数‘(x)f(t)dtax在[a,b]上dx(x)f(t)dtf(x)adx具有导数,且

定理:在区间[a,b]上的连续函数f(x)的原函数一定存在

如果函数f(x)在区间[a,b]上连续,且F(x)是f(x)的任意一个原函数,那么ba牛顿——莱布尼茨公式

f(x)dxF(b)F(a)

定积分的换元法

假设(1)函数f(x)在区间[a,b]上连续;

(2)函数x(t)在区间[,]上单值,且具有连续导数;

x(t)的值在[a,b]上变化,a,()b,(3)当t在区间[,]上变化时,且()b则有定积分的换元公式a f(x)dxf[(t)]'(t)dt

设f(x)在区间[a,a]上连续,则

f(x)dx0f(x)a(1)如果函数为奇函数,则(2)如果函数f(x)为偶函数,则a20aaf(x)dx2f(x)dx0a

0

定积分的分部积分法 sinxdx2cosnxdxn

'''''[a,b]u(x)v(x)u(x)v(x)(uv)uvvu设、在上具有连续导数、,那么,在等式的两边

bbb(uv)uv'dxvu'dxaaa分别求a到b的定积分得

b……定积分的分部积分公式

bbb'bb'uvdx(uv)vudxudv(uv)vduaaaaaa即 或

无穷区间上的广义积分

limf(x)dx定义:设函数f(x)在区间[a,]上连续,取b>a,如果极限ba存在,则称此极

b限为函数f(x)在区间[a,]上的广义积分,记做a无界函数的广义积分(见书279页)定积分的应用(见书286页)

元素法

在极坐标系中的计算法

f(x)dx即af(x)dxlimf(x)dxbab

第四篇:高数上册总结知识点修订版

高等数学难点总结(上册)

函数(高等数学的主要研究对象)

要着重掌握的常见函数类型:幂函数、指数函数、对数函数、三角函数、反三角函数

极限:数列的极限(特殊)——函数的极限(一般)

函数极限的可能情况有24种(自变量6种,因变量4种),对于这其中任一种情形,都应该熟练掌握其分析定义(严格的数学表述)

极限的本质是:已知某一个量(自变量)的变化趋势,去考察另外一个量(因变量)的变化趋势

由极限的概念可以推得的一些性质:局部有界性、局部保号性等等,应当注意到,由极限概念所得到的性质通常都是只在局部范围内成立

趋于零的极限称之为无穷小量,不同的无穷小量之间有阶的区别,类似可定义无穷大量 两个判断极限的重要准则:

1、夹逼原理;

2、单调有界数列必有极限。它们分别对应两个重要极限。

各种典型极限的计算

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限值 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

连续的概念相当于给我们提出了一种求极限的方法:代入法 闭区间上连续函数的性质。

不连续的情形:间断。其分类可根据连续不成立的条件逐一分析

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上所有函数在某点的增量我们都可以线性关系去近似它,但并不是任何时候这个近似都足够好,只有当误差足够小时,才能说该函数在该点可微分

对一元函数,连续不一定可导,可导必连续,可导等价于微分 各种典型导数和微分的计算

导数反映了函数在某点附近的变化快慢程度,因此可用来作为研究函数某些性质的工具,尤其是那些涉及讨论函数变化情况的性质。极值的概念,极值是局部而非整体性质的体现

费尔马定理:一个函数的极值点,要么不可导,要么导数为零

微分中值的三个定理:罗尔定理、拉格朗日定理和柯西定理。它们是同一个数学事实在不同的坐标系中的表达:对一个闭区间连续、开区间可导的函数来说,必存在区间内的一点,该点切线的斜率等于两端点连线的斜率。用导数研究函数的极值情况

用导数研究函数的增减性和凹凸性

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑几个问题:

1、一个函数能够用多项式来近似的条件是什么?

二、这个多项式的各系数如何求?

二、即使求出了这个多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),一般来说,余项的选取不同,对函数的要求也不同,常见的有皮亚诺和拉格朗日两种余项

不定积分:导数的逆运算 什么样的函数有不定积分

求不定积分的若干典型方法:凑微分、换元和分部 各种典型不定积分的计算。

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分 积分上限函数及其导数

微积分基本定理,其最重要的作用是将定积分(一个复杂和式的极限)与不定积分(导数的逆运算)相联系

积分中值定理,其对应的意义是变量的平均值

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

第五篇:高数(上)前三章知识点总结

第一章 函数与极限

第一节 映射与函数

一、集合

1、集合概念

(1)通常用大写拉丁字母A、B、C……表示集合(简称集),用小写拉丁字母a、b、c……表示元素(简称元)。

(2)含有有限个元素的集合为有限集,不是有限集的集合成为无限集。(3)表示集合的方法通常有列举法和描述法。

(4)习惯上,全体非负整数即自然数的集合记作N,全体正整数的集合为N,全体整数的集合记作Z,全体有理数的集合记作Q,全体实数的集合记作R。

(5)设A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作AB或BA。如果AB且BA,则称集合A与集合B 相等,记作AB。(6)若AB且AB,则称A是B的真子集,记作AB(7)不含任何元素的集合成为空集。

2、集合的运算

(1)集合的基本运算有并、交、差。

AB={x/xA或xb} AB={x/xA且xB} AB={x/xA且xB}(2)若集合I为全集或基本集,称I/A为A的余集或补集,记作AC(3)集合的并、交、余运算满足交换律、结合律、分配律、对偶律。

3、区间和邻域

(1)开区间、闭区间、半开区间都称为有限区间,此外还有无限区间。(2)以点a为中心的任何开区间称为点a的邻域,记作U(a)。

(3)点a 的邻域记作U(a,),点a 称为这邻域的中心,称为这邻域的半径。

(4)点a 的去心邻域记作UO(a,)。

二、映射

1、映射概念

(1)映射定义:设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作 f:XY(2)设f是从集合X到Y上的映射,若Rf=Y,则称f为X到Y上的映射或满射;若对X中任意两个不同元素的像不相等,则称f为X到Y上的单射;若映射f既是单射又是满射,则称f为一一映射或双射。

2、逆映射与复合映射

(1)只有单射才存在逆映射

(2)若g:XY1,f:Y2Z,则这个映射称为映射g和f构成的复合映射,记作fg 即fg:XZ。

三、函数

1、函数概念

(1)设数集DR,则称映射f:DR为定义在D上的函数,通常简记为 y=f(x),xD 其中x称为自变量,y称为因变量,D称为定义域,记作Df,即Df=D(2)构成函数的要素是定义域和对应法则。

(3)函数的定义域通常按以下两种情形来确定:一种是对有实际背景的函数,另一种是对抽象地用算式表达的函数。

(4)表示函数的主要方法有三种:表格法、图形法、解析法(公式法)。

2、函数的几种特性

(1)函数的有界性

(2)函数的单调性

单调增加和单调减少的函数统称为单调函数(3)函数的周期性

对于函数f(x)的定义域为D,若存在正数l,使得 f(x+l)=f(x)恒成立,则称f(x)为周期函数,l称为f(x)的周期。L一般指最小正周期。(4)函数的奇偶性

设函数f的定义域关于原点对称,若对于任一xD,f(-x)=f(x)恒成立,则称f(x)为偶函数; 若对于任一xD,f(-x)=-f(x)恒成立,则称f(x)为奇函数。偶函数的图形关于y轴是对称的。奇函数的图形关于原点是对称的。

3、反函数与复合函数

(1)对于函数f 来说,y=f1(x)为其反函数,f(x)称为直接函数。直接函数与反函数的图形关于直线y=x是对称的。

(2)设函数y=f(u)的定义域为Df,函数u=g(x)的定义域为Dg,且其值域RgDf,则由下式确定的函数

Y=f【g(x)】,xD 称为由函数u=g(x)和函数y=f(u)构成的复合函数,变量u极为中间变量。

4、函数的运算(和差商积)

5、初等函数

(1)幂函数、指数函数、对数函数、三角函数、反三角函数这五类函数统称为基本初等函数。

(2)有常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数。

第二节 数列的极限一、二、数列极限的定义 收敛数列的性质

定理一(极限的唯一性)如果数列{xn}收敛,那么它的极限唯一。定理二(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。定理三(收敛数列的保号性)如果数列{xn}存在极限且极限大于零(或小于零),那么存在正整数N0,当n  N 时,都有xn0(或xn0)

定理四(收敛数列与其子数列间的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛,且极限也是a

第三节 函数的极限

一、函数极限的定义

1、自变量趋于有限值时函数的极限

2、自变量趋于无穷大时函数的极限

二、函数极限的性质

定理一(函数极限的唯一性)如果函数存在极限,那么这极限唯一。

定理二(函数极限的局部有界性)如果函数的极限为a,那么存在常数M0和0,使得当0xx0时,有f(x)M。

定理三(函数极限的局部保号性)定理四(函数极限与数列极限的关系)

第四节 无穷小与无穷大

一、无穷小的定义

二、无穷大的定义

三、若函数f(x)为无穷大,则

1为无穷小; f(x)1为无穷大。f(x)若函数f(x)为无穷小,则

第五节 极限运算法则

定理1 有限个无穷小的和也是无穷小 定理2 有界函数与无穷小的乘积是无穷小 推论1 常数与无穷小的乘积是无穷小 推论2 有限个无穷小的乘积也是无穷小 定理3 关于无穷小的乘除运算

定理4 两个存在极限的数列之间的乘除运算符合一般乘除运算 定理5 复合函数的极限运算法则

第六节 极限存在准则 两个重要极限

一、夹逼准则(准则I及准则I’)limx0sinx1 x limcosx1

x0

二、准则II 单调有界数列必有极限

limx1(1)xe

x

三、柯西极限存在准则(也叫柯西审敛原理)

第七节 无穷小的比较

一、高阶无穷小、同阶无穷小、等价无穷小、k阶无穷小

二、定理

一、定理二

第八节 函数的连续性与间断点

第九节

连续函数的运算与初等函数的连续性

一、连续函数的和、差、积、商的连续性

二、反函数与复合函数的连续性

三、初等函数的连续性

第十节 闭区间上连续函数的性质

一、有界性与最大值最小值定理

二、零点定理与介值定理 三、一致连续性

第二章 导数与微分

第一节 导数概念

一、导数的定义

单侧导数:左导数和右导数统称为单侧导数

二、导数的几何意义

三、函数可导性与连续性的关系

如果函数y=f(x)在点x处可导,则函数在该点必连续;另一方面,一个函数在某点连续却不一定在该点可导。

第二节 函数的求导法则

一、函数的和、差、积、商的求导法则

二、反函数的求导法则

三、复合函数的求导法则

四、基本求导法则与导数公式

1、常数和基本初等函数的导数公式(共十六道,详见95页)

2、函数的和、差、积、商的求导法则(共四道,详见95页)

3、反函数的求导法则

4、复合函数的求导法则

第三节 高阶导数

一般的,(n-1)阶导数的导数叫做n阶导数

第四节 隐函数及由参数方程所确定的函数的导数 相关变化率

一、隐函数的导数

可以用函数十字表达的函数叫做显函数

二、由参数方程所确定的函数的导数

三、相关变化率

第五节 函数的微分

一、微分的定义

二、微分的几何意义

三、基本初等函数的微分公式与微分运算法则

1、基本初等函数的微分公式(详见116页)

2、函数的和、差、积、商的微分法则(详见117页)

3、复合函数的微分法则

四、微分在近似计算中的应用

1、函数的近似计算

2、误差估计

第三章 微分中值定理与导数的应用

第一节 微分中值定理

一、罗尔定理

二、拉格朗日中值定理

三、柯西中值定理

第二节 洛必达法则

第三节 泰勒公式

第四节 函数的单调性与曲线的凹凸性

一、函数单调性的判定法

二、曲线的凹凸性与拐点

第五节 函数的极值与最大值最小值

一、函数的极值及其求法

二、最大值最小值问题

第六节 函数图形的描绘

第七节 曲率

一、弧微分

二、曲率及其计算公式

三、曲率圆与曲率半径

四、曲率中心的计算公式 渐屈线与渐伸线

第八节 方程的近似解 一、二分法

二、切线法

下载高数二下知识点总结word格式文档
下载高数二下知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高数下知识点总结大全

    总结是社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认......

    高数上册知识点总结(合集五篇)

    高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(yax),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 x2xxlim1 3、无穷......

    考研高数知识点总结(含五篇)

    综合理解是在基础知识点基础上进行的,加强综合解题能力的训练,熟悉常见的考题的类型,下面是小编为你带来的考研高数知识点总结,希望对你有所帮助。高等数学是考研数学的重中之......

    高数知识点(推荐阅读)

    高等数学B2知识点 1、 二元函数的极限、连续、偏导数、全微分;微分法在几 何上的应用;二元函数的方向导数与梯度;二元函数的极值。 2、 二重积分的计算(直角坐标、极坐标);三重积......

    高数总结

    高数总结 公式总结: 1.函数定义域 值域 Y=arcsinx [-1,1] [-π/2, π/2] Y=arccosx [-1,1] [0, π] Y=arctanx (-∞,+∞) (-π/2, π/2) Y=arccotx (-∞,+∞) (0, π) Y=shx......

    二下知识点教师

    (一)1-4单元重点生字词: 生字表中的“两字成词”: 解冻世界笋芽呼唤忽然仍然脆弱杜鹃泥泞芬芳应该环绕隐约茂盛凤凰雄伟辉煌哄骗而且 区、街道单元卷及历年期中考出现的生词: 摇......

    高数复习知识点及提纲

    高数复习知识点及提纲 1. 瑕积分的判别,广义积分和Γ(n)的计算。6分 2. 罗必达法则求未定式。6分 3. 利用导数研究函数的单调性和极值,凸凹性和拐点。 10’ 4. 利用定积分求解封......

    高数下册总结

    篇一:高数下册总结 高数(下)小结 一、微分方程复习要点 解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结: 二阶......