高数复习知识点及提纲

时间:2019-05-12 20:35:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高数复习知识点及提纲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高数复习知识点及提纲》。

第一篇:高数复习知识点及提纲

高数复习知识点及提纲

1.瑕积分的判别,广义积分和Γ(n)的计算。6分

2.罗必达法则求未定式。6分

3.利用导数研究函数的单调性和极值,凸凹性和拐点。10’

4.利用定积分求解封闭图形的面积7分

5.多元函数连续与可微的关系3分

6.多元函数的一阶、二阶偏导数的计算;二元函数的全微分,多元函数复合函数的求导及隐函数求导。20分

7.二元函数极值的经济应用7分

8.二重积分的计算以及交换积分次序10分

9.利用级数的收敛性证明极限,求幂级数的收敛域和函数,函数的幂级数展开18分

10.微分方程解的概念,一阶线性的微分方程的求解。13’--------------------

第二篇:高数知识点

高等数学B2知识点

1、二元函数的极限、连续、偏导数、全微分;微分法在几

何上的应用;二元函数的方向导数与梯度;二元函数的极值。

2、二重积分的计算(直角坐标、极坐标);三重积分的计

算(直角坐标、柱面坐标)。

3、曲线积分、曲面积分的计算;格林公式;高斯公式。

4、数项级数收敛性的判别;幂级数的收敛半径、收敛域。

第三篇:高数知识点总结

高数重点知识总结

1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(yax),三角函数(y=sinx),常数函数(y=c)

2、分段函数不是初等函数。

x2xxlim1

3、无穷小:高阶+低阶=低阶

例如:limx0x0xxsinx4、两个重要极限:(1)lim1x0x(2)lim1xex01x1lim1e xxg(x)x经验公式:当xx0,f(x)0,g(x),lim1f(x)xx0exx0limf(x)g(x)

例如:lim13xex01xx03xlimxe3

5、可导必定连续,连续未必可导。例如:y|x|连续但不可导。

6、导数的定义:limx0f(xx)f(x)f'(x)xxx0limf(x)f(x0)f'x0

xx07、复合函数求导:dfg(x)f'g(x)g'(x)dx

例如:yxx,y'2x2x1 2xx4x2xx1

18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx x2y21例如:解:法(1),左右两边同时求导,2x2yy'0y'x ydyx法(2),左右两边同时微分,2xdx2ydydxy9、由参数方程所确定的函数求导:若yg(t)dydy/dtg'(t),则,其二阶导数:dxdx/dth'(t)xh(t)d(dy/dx)dg'(t)/h'(t)dyddy/dxdtdt 2dxdxdx/dth'(t)

210、微分的近似计算:f(x0x)f(x0)xf'(x0)例如:计算 sin31

11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:ysinx(x=0x是函数可去间断点),ysgn(x)(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f(x)sin(x=0是函数的振荡间断点),y数的无穷间断点)

12、渐近线:

水平渐近线:ylimf(x)c

x1x1(x=0是函xlimf(x),则xa是铅直渐近线.铅直渐近线:若,xa斜渐近线:设斜渐近线为yaxb,即求alimxf(x),blimf(x)ax

xxx3x2x1例如:求函数y的渐近线

x2113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

14、极值点:令函数y=f(x),给定x0的一个小邻域u(x0,δ),对于任意x∈u(x0,δ),都有f(x)≥f(x0),称x0是f(x)的极小值点;否则,称x0是f(x)的极大值点。极小值点与极大值点统称极值点。

15、拐点:连续曲线弧上的上凹弧与下凹弧的分界点,称为曲线弧的拐点。

16、拐点的判定定理:令函数y=f(x),若f“(x0)=0,且x0;x>x0时,f“(x)<0或xx0时,f“(x)>0,称点(x0,f(x0))为f(x)的拐点。

17、极值点的必要条件:令函数y=f(x),在点x0处可导,且x0是极值点,则f'(x0)=0。

18、改变单调性的点:f'(x0)0,f'(x0)不存在,间断点(换句话说,极值点可能是驻点,也可能是不可导点)

19、改变凹凸性的点:f”(x0)0,f''(x0)不存在(换句话说,拐点可能是二阶导数等于零的点,也可能是二阶导数不存在的点)

20、可导函数f(x)的极值点必定是驻点,但函数的驻点不一定是极值点。

21、中值定理:

(1)罗尔定理:f(x)在[a,b]上连续,(a,b)内可导,则至少存在一点,使得f'()0

(2)拉格朗日中值定理:f(x)在[a,b]上连续,(a,b)内可导,则至少存在一点,使得f(b)f(a)(ba)f'()

(3)积分中值定理:f(x)在区间[a,b]上可积,至少存在一点,使得bf(x)dx(ba)f()

a22、常用的等价无穷小代换:

x~sinx~arcsinx~arctanx~tanx~ex1~2(1x1)~ln(1x)1cosx~12x2111tanxsinx~x3,xsinx~x3,tanxx~x3263

23、对数求导法:例如,yxx,解:lnyxlnx1y'lnx1y'xxlnx1 y24、洛必达法则:适用于“

0”型,“”型,“0”型等。当0xx0,f(x)0/,g(x)0/,f'(x),g'(x)皆存在,且g'(x)0,则limf(x)f'(x)limg(x)xx0g'(x)

如,xx0exsinx10excosx0exsx1ilimlimlim x0x20x02x0x02225、无穷大:高阶+低阶=高阶

例如,26、不定积分的求法

(1)公式法

(2)第一类换元法(凑微分法)

23x12x3limnx2x5x22xlim4 5x2x3(3)第二类换元法:哪里复杂换哪里,常用的换元:1)三角换元:a2x2,可令xasint;x2a2,可令xatant;x2a2,可令xasect

2)当有理分式函数中分母的阶较高时,常采用倒代换x

27、分部积分法:udvuvvdu,选取u的规则“反对幂指三”,剩下的作v。分部积分出现循环形式的情况,例如:excosxdx,sec3xdx

1t

第四篇:上册高数复习必备

第一章:

1、极限

2、连续(学会用定义证明一个函数连续,判断间断点类型)

第二章:

1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续

2、求导法则(背)

3、求导公式 也可以是微分公式

第三章:

1、微分中值定理(一定要熟悉并灵活运用--第一节)

2、洛必达法则

3、泰勒公式 拉格朗日中值定理

4、曲线凹凸性、极值(高中学过,不需要过多复习)

5、曲率公式 曲率半径

第四章、第五章:积分

不定积分:

1、两类换元法

2、分部积分法(注意加C)

定积分:

1、定义

2、反常积分

第六章: 定积分的应用

主要有几类:极坐标、求做功、求面积、求体积、求弧长

第七章:向量问题不会有很难

1、方向余弦

2、向量积

3、空间直线(两直线的夹角、线面夹角、求直线方程)

3、空间平面

4、空间旋转面(柱面)

高数解题技巧。(高等数学、考研数学通用)

高数解题的四种思维定势

●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

第五篇:高数复习要点

高数(上册)期末复习要点

第一章:

1、极限(夹逼准则)

2、连续(学会用定义证明一个函数连续,判断间断点类型)

第二章:

1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续

2、求导法则(背)

3、求导公式也可以是微分公式

第三章:

1、微分中值定理(一定要熟悉并灵活运用--第一节)

2、洛必达法则

3、泰勒公式拉格朗日中值定理

4、曲线凹凸性、极值(高中学过,不需要过多复习)

5、曲率公式曲率半径

第四章、第五章:积分

不定积分:

1、两类换元法

2、分部积分法(注意加C)

定积分:

1、定义

2、反常积分

第六章: 定积分的应用

主要有几类:极坐标、求做功、求面积、求体积、求弧长

第七章:向量问题不会有很难

1、方向余弦

2、向量积

3、空间直线(两直线的夹角、线面夹角、求直线方程)

3、空间平面

4、空间旋转面(柱面)

下载高数复习知识点及提纲word格式文档
下载高数复习知识点及提纲.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    期末高数复习

    期末高数复习重点: 一. 求极限 1. 等价无穷小的代换; 2. 洛必达法则; 3. 两个重要极限;lim(1-1/x)^x=1/e 二.求导,求微分 1.复合函数; 2.隐函数; 3.参数函数; 4.求切线,法线方程; 5.......

    高数知识点总结(上册)

    高数知识点总结(上册) 函数: 绝对值得性质: |a+b||a|+|b| |a-b||a|-|b| |ab|=|a||b| a|a|(b0)|b|=|b| 函数的表示方法: (1)表格法 (2)图示法函数的几种性质:(1)函数的有......

    高数二下知识点总结

    考试之前我们及时的总结,罗列,能够帮助我们梳理知识点,有效应对考试,小编为大家整理了高二语文下册期末知识点总结,欢迎大家阅读。第一版块:古诗文阅读与鉴赏(7题33分)1。名句名篇默......

    高数下知识点总结大全

    总结是社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认......

    五数上册复习知识点归纳

    人教版五年级数学上册复习知识点归纳第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。注意:(1)计算结......

    高数(下)复习要点

    高等数学(下)复习要点 (对经管及文科类学生不要求带“*”的内容) 第七章 1、空间曲线在坐标面的投影,P8,例5,P9,9 2、向量的模、方向角、方向余弦、单位化,P19,例7,P20,10.。 3、数量......

    英语和高数复习步骤

    简单介绍一下本人,偶今年2战,报考的34所,最后调剂到一所非主流学校。就自己这两年来,对考研英语的理解,简单谈一下自己的看法,希望对12年考生有所帮助。 先说一下英语参考书的选择......

    高数复习范围5篇

    1.高等数学(微积分)。这部分我用的同济大学的高等数学,一共两册,是很不错的教材。一章 函数与极限。这一章前面要熟悉几个常见初等函数的图形。反双曲正弦等我没看,个人觉得看不看......