第一篇:高数复习范围
1.高等数学(微积分)。这部分我用的同济大学的高等数学,一共两册,是很不错的教材。一章 函数与极限。
这一章前面要熟悉几个常见初等函数的图形。反双曲正弦等我没看,个人觉得看不看无所谓。用定义证明极限大纲是不要求的,但是这部分例题应该看看,对理解极限的定义有好处,而极限的定义是选择题爱考的知识点。一致连续性这节大纲不要求。
二章 导数与微分
这章相对简单。由参数方程所确定的函数导数,相关变化率不考,微分近似计算不考。三章 中值定理与导数应用
这一章比较难,但也是考试重点,主要是证明题。几个中值定理理解起来并不困难,但是运用起来会有困难,所以得多做题目练练,这几个定理要学会证明。泰勒公式可能开始看起来比较抓狂,其实这个证明考试应该不会考,太复杂。但是这个公式十分重要,要学会应用,而且应用起来并不困难,所以一定要掌握。后面的曲率,方程近似解都不考。(另外书中凡是有关工程应用的例题和习题都不用看)
四章 不定积分
这部分书上给的习题并不难,要好好做,全书上的一些题目到很让人抓狂。有理函数的积分好像大纲已经不要求了,10年全书上还留着,可以看看,对计算一些积分有好处。积分表大纲是不要求的。
五章 定积分
这章很重要,变限积分经常考。要搞清楚变限积分,不定积分,定积分的区别。什么样的条件下有原函数,什么条件下可积,可积和原函数存在是没有关系的。可能刚开始看的时候会有些混,仔细看书不要慌,后面的复习也会复习到的。第五节 反常积分的审敛法 Γ函数大纲是不要求的。但是我要说说Γ函数,当时我没有认真看真有点悔,这个函数在概率统计里很有用。
六章 定积分的应用
数三考的内容只有:平面图形面积计算 旋转体体积计算平行截面面积为已知立体体积计算(这部分经济数学教材给的例子比较好)
七章 向量代数与空间解析几何(数三不要求)
八章 多元函数微分学
这一章我开始时看的十分抓狂,特别是复合和隐函数的情形。但是弄懂后这章出的题目并不难,所以要多做几个题目找点感觉,才能知道自己的理解错在哪里。不考的主要内容有:全微分近似计算 多元函数几何应用 方向导数与梯度 二元函数泰勒公式 最小二乘法。
九章 重积分
这部分只考二重积分,重点就是计算二重积分,基本上每年都有一个大题,一定得学会算各种二重积分,会用计算技巧(奇偶性,对称性。计算很重要)
十章 曲线 曲面积分(数学不要求)
十一章 无穷级数
这章近两年都没考大题,可能主要是数三四合并的原因,但这章仍然很重要。开始看可能也有些难度,求和函数要自己动手多做做题。不考的内容有:柯西审敛原理; 正项级数中的根值法09大纲删了,但我想这个是可以用的 ;求和函数中数项级数求和09删了; 函数幂级数展开式应用 ;函数项级数一致收敛性…; 傅立叶级数。
十二章 微分方程与差分方程
工程数学没有差分方程,但是这整章内容都比较简单,个人觉得直接看复习全书就可以了。
2.线性代数。这部分的教材我依旧用的同济大学的工程数学,和经济类的数学差别并不大。只有向量空间和线性空间与线性变换不用考。线性代数内容比较抽象,逻辑性比较强。但是它是三门中学起来最简单的一门课,要注意前后知识点的联系,永乐大帝就是这么教我们的。
3.概率论与数理统计。这部分的书我都没认真看,开始总觉得时间还多就晃晃悠悠的看,后来觉得该快点看完就赶着看了,其实也有学数学学疲了的原因。概率论这部分学刚开始学起来应该比较困难,可能觉得比微积分难,因为这是数学中一种全新的研究方法。但是书一定得好好看,这部分内容看明白它的研究方法和明白它的各种模型后就觉得不是那么难了。经济数学教材中主要有区间估计和假设检验不考,09年删除的;线性回归分析…不考。阶段二 听了一个数学基础班
当时有个朋友帮我搞到了不少辅导班的视频,当时心中甚喜。可是这个班听完并未给我太大的帮助,数学主要是靠自我思考和动笔做题的。我承认当时有思维上的惰性,听课比想破脑袋搞那些自己不会的题要安逸的多。我想告诉大家的是不要被那些什么导学班,基础班乱七八糟的弄混头脑。他们不可能想高中老师那样手把手的教你,然后给你布置相应的题目,再给你讲解还要搞考试,所以也不会有高中那样的效果。
阶段三 做了基础过关660题
我觉得这是个失误。当时我并没有看复习全书,看到书上的基础过关,想必在全书前做就可以了。其实这个“基础”并不是那个“基础”,大概是题型是填空选择的意思,或者主要是对考研基础知识点的考查吧。总之这个难度是不亚于真题的,所以不建议看完书后直接就做这个。
阶段四 李永乐复习全书
我的全部数学资料都是李永乐的,因为我觉得这个老师十分认真耐心和负责。关于复习全书,我觉得我的做法也值得商榷,我一上来就拿笔做了起来。虽然还是有一部分题目我会做,但这无疑是个耗时而痛苦的过程。我搞了差不多三个月才搞完,而且概率论部分实在是做不下去了就直接看完了。最终不少东西我还是不会的,但时间消耗了不少。所以我认为对于数学基础不好的,看全书时大抵是可以先认真看一遍的(当然也要适当动动笔),第二遍再把大部分掌握不太好的题目做做。其实全书的难度还是比真题难不少的,题目不会做很正常。但是后面给的习题一定要好好做,很接近真题难度。
阶段五 听了强化班翻了翻复习全书
开始听强化班是想把知识快速过一遍,但看完全书后真是有点脑袋不想想问题了的感觉。后来花了整整三天听了高数的一个强化班,开始感觉还好,后来又不想听课又不想看别的就茫然的撑着把课听完了,没有多大收获,除了做了点笔记。后来我就主要看别的科目,减少的数学的时间。后来在论坛上看到别人发帖子说某某老师的高数讲的不错,正好我有他的视频就试听了一下,结果还真是觉得有帮助,但由于时间有限我只把自己比较差的章节听了听。线代当然是听的李永乐的,这个毋庸置疑,讲的特别不错,概率课还行吧。总之对于辅导班吧,我觉得数学强化班还是有一定的帮助,前提是你复习的还行了但是还觉得有些混。另外对于不同的人选择是不同的,听不听都行,如果你自己可以学的很投入可以想清楚那些问题,那应该比老师讲的效果更好。总之辅导班不是提高数学的充分条件,自己思考同样可以达到目的。
阶段六 做真题
我做真题比较散漫,好多都没按3个小时的时间来做。这很不好,我觉得。我后来没什么时间做模拟题,只做了真题。总之我觉得大家应该早点把真题做了,然后再结合不懂的翻翻全书,这样比较好吧。关于模拟题,我觉得也是应该做的,模拟题一般比真题难,也要制造一种考试的氛围去模拟。对大多数人来说考试时时间真的是挺紧的。
总结一句就是:多思考,多动笔,重计算,重速度。
希望我的这些经验教训能给基础薄弱的同学一些帮助,一些警示。不要怕数学,一定要坚持下去!
第二篇:上册高数复习必备
第一章:
1、极限
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式 也可以是微分公式
第三章:
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式 拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式 曲率半径
第四章、第五章:积分
不定积分:
1、两类换元法
2、分部积分法(注意加C)
定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程)
3、空间平面
4、空间旋转面(柱面)
高数解题技巧。(高等数学、考研数学通用)
高数解题的四种思维定势
●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
第三篇:高数复习要点
高数(上册)期末复习要点
第一章:
1、极限(夹逼准则)
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章:
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、第五章:积分
不定积分:
1、两类换元法
2、分部积分法(注意加C)
定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程)
3、空间平面
4、空间旋转面(柱面)
第四篇:期末高数复习
期末高数复习重点:
一. 求极限
1.等价无穷小的代换;
2.洛必达法则;
3.两个重要极限;lim(1-1/x)^x=1/e
二.求导,求微分
1.复合函数;
2.隐函数;
3.参数函数;
4.求切线,法线方程;
5.反三角函数:sin y=xy=arcsin x
三.函数连续性质
1.连续的定义;左(右)连续
2.分段函数,分段点处的连续性:求函数的间断点及类型
3.闭区间连续函数的性质:零点定理,介值定理
四.求函数的单调性,凹凸区间和拐点
五.中值定理(闭区间开区间连续可导)
课本重点复习章节:
第一章 函数与极限
第五节 极限运算法则
无穷小因子分出法 P47例5-例7;消去零因子法P46例3;通分化简
第六节 极限存在法则;两个重要极限
P58:例7可用洛必达法则求; 求幂指函数的极限:如例8
第七节 无穷小的比较
几个重要等价无穷小的代换
第八节 函数的连续性
证明函数的连续性;求函数的间断点及类型,特别是可去间断点
第九节 闭区间上连续函数的性质
中值定理和介值定理
第二章 导数与微分
第三节 复合函数的求导法则
第五节 隐函数的导数以及参数方程所确定的函数的导数
对数求导法 P116 例5,例6; 参数求导
第三章 中值定理与导数的应用
第一节 中值定理
第二节 洛必达法则
各种未定式类型求极限
第四节 函数的单调性和曲线的凹凸性
单调性和驻点;凹凸性和拐点;不可导点
第五篇:高数(下)复习要点
高等数学(下)复习要点
(对经管及文科类学生不要求带“*”的内容)
第七章
1、空间曲线在坐标面的投影,P8,例5,P9,92、向量的模、方向角、方向余弦、单位化,P19,例7,P20,10.。
3、数量积、向量积。P27,84、平面方程、平面夹角,点到平面的距离。P35,3..5、空间直线及方程。P41,10
*
6、旋转曲面P43,例2.第八章
*
1、二元函数极限不存在的证明P54,例7.2、求二元函数的极限P58, 5(2),(4),P56,例93、偏导计算。P80,例9,P82,14(2),P88,2(4),P89,7,8*(4)
4、全微分。P74,2。4(2)。
*5熟悉可微,可导,连续和极限存在之间的关系。P74(B)16、几何应用。P94例3.7、方向导数与梯度P100例4.8、条件极值P111,7.第九章
1、二重积分计算。P124例3,P133 4(4),8(2),P134,13(1)
2、曲面面积。P141,3.*
3、三重积分。P151,4(2)。
4、曲线积分。P166,1(6),3(2)。
5、格林公式,,与路径无关的条件。P176,3(4),5(2)。*
6、曲面积分。P188,1(1),5(1)。
*
7、高斯公式。P194,1(4)。
第十章
1、收敛级数性质。
2、正项级数敛散性的判别。P211,2(8),3(6)。
3、交错级数敛散性的判别。P211,5(4)
4、幂级数的收敛半径和收敛域。P221,1(5),2(3)
*
5、求和函数。P222,3(1),(3)。
*
6、展开为幂级数。P236,2(6)
*
7、傅里叶级数。P250,4