高数极限求法总结

时间:2019-05-12 01:39:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高数极限求法总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高数极限求法总结》。

第一篇:高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致 极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况 0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)

E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

(从网上发现,谢谢总结者)

第二篇:浅析极限的若干求法

科技信息 ○高校讲台○ SCIENCE & TECHNOLOGY INFORMATION

2007 年第 23 期

浅析极限的若干求法

孟金涛

(郑州航空工业管理学院数理系河南 郑州 450015)

摘要: 极限理论是高等数学的基础, 本文给出了极限的若干求法, 并用具体实例加以说明。关键词: 极限;表达式;等价无穷小

极限理论是高等数学的基础, 极限问题是高等数学中困难问题之

a +a +⋯+a

xx

x n

一。中心问题有两个: 一是证明极限的存在性, 二是求极限的值。两个 问题密切相关: 若求出了极限的值, 自然极限的存在性也就证明了。反 之, 证明了存在性, 常常也就为求极限铺平了道路。

利用定义证明极限的存在, 有一先决条件, 即事先要知道极限的 猜测值。通常情况下我们都不知道表达式的极限值, 那么如何根据表

→0

a1

+lim

x→0

+⋯+lim x a21 x→0 x→

1解】【(1)将根式有理化, 于是有原式为

x

解】令 t=-x,则 x→∞时, t→∞。于是lim(1-)=lim(1+)= 【

x→∞ t→∞ x t e

x

-t

=1 lim x→0x

(enπ)=sin2 【π, 由于初等函数在有定义的地方都连续,=sin

π

=sin项趋向于零求极限。1+

(1)利用收敛级数的通项趋向于零求极限。(2)利用收敛级数的余 2 π2lim =1。

原极限=sinn→∞ 2 +

1n

12×13×⋯×(n+10)例 9】求下列极限lim 【x, 其中(1)xn= 11×

十一、利用导数定义求极限n→∞ n

2×5×8⋯×(3n-1)

f(x-3h)-f(x0)例 11】设 f(x)在 x0 处可导, 求lim 0 【(2)xn=⋯+ h→0 2 2

2n)n+1 *(2n)

原极限=lim= 0 =arctan1= π 20n→∞ n i=11+x 4 i)

九、利用收敛级数的性质求极限,-

n+n +n

*)-

*

xn+1解】【(+当 x→∞时), 所以正项级数 1)由于 +x

n 3n+2 3 n =

1收敛, 从而可得通项 xn→0(当 n→∞时)。

解】由导数定义有【

f(x03h)-f(x0)

h→0

lim

h→0

=lim

h

·(1

=0

Mathematics of Computation,1995,64:1147-1170.[ 2] A.R.Conn and Ph.L.Toint.An algorithm using quadratic interpolation for unconstrained derivative free optimization[ A].In G.Di Pillo and F.Gianessi, editors,Nonlinear Optimization and Applications [ M] ,New York, Plenum Publishing, 1996,27-47.[ 3] A.R.Conn,K.ScheinbergandPh.L.Toint.Ontheconvergenceof derivative-free methods for unconstrained optimization[ A].In A.Iserles andM.Buhmann,editors,ApproximationTheoryandOptimization: Tributes to M.J.D.Powell [ C] , Cambridge,UK,Cambridge University Press, 1997,83-103.[ 4] J.J.More and D.C.Sorensen.Computing a trust region step [ J].SIAM J.Sci.Stat.Comput,1983,4(3):553-572.Kef

≤Kk

2Kef

max$△k,△ kKgk

△k

(上接第 480 页)实可行的财务风险防范措施。

从单个企业来讲, 收益不足是导致财务风险的主要因素, 经营收 入扣除经营成本费用税金等经营费用后是经营收益, 如果从经营收益 开始就已经亏损, 说明企业已近破产倒闭, 即使总收益为盈利, 可能是 由于非主营业务或营业外收入所形成利润增加, 如出售手中持有有价 证券、固定资产等;如果经营收益为盈利, 而总收益为亏损, 问题不太 严重的话,说明已经出现危机信号, 但是可以正常经营的, 这是因为企 业的资本结构不合理, 举债规模大,利息负担重所致。企业必须针对财

务指标的评价采取有效措施加以调整。

综上所述,利用财务指标的评价, 找出企业的薄弱环节, 制定出企 业的筹资活动、投资活动、资金回收、收益分配策略及措施, 防范规避 财务风险,才能使企业长久稳定健康发展。

[ 1] 温素彬, 薛恒新.基于科学发展观的企业三重绩效评价模型[J].会计

研究.[ 2] 王化成, 刘俊勇, 孙薇.企业业绩评价[M].北京: 中国人民大学出版

参考文社.献

488

第三篇:高数极限习题

第二章 导数与微分

典型例题分析

客观题

例 1 设f(x)在点x0可导,a,b为常数,则limf(x0ax)f(x0bx)xabx0()

f(x0)Aabf(x0)

B(ab)f(x0)

C(ab)f(x0)

D

答案 C

f(x0ax)f(x0bx)limx0x[f(x0ax)f(x0)][f(x0bx)f(x0)]lim x0x

f(x0bx)f(x0)f(x0ax)f(x0)blim

alim

x0x0bxax

(ab)f(x0)

例2(89303)设f(x)在xa的某个邻域内有定义,则f(x)在xa处可导的一个充分条件是()1f(a2h)f(ah)(A)limhfaf(a)存在(B)lim存在h0hhh(C)limf(ah)f(ah)2hh0存在(D)limf(a)f(ah)h存在h0答案 D

解题思路

(1)对于答案(A),不妨设

1hx,当h时,x0,则有

1f(ax)f(a)limhfaf(a)lim存在,这只表明f(x)在xa处hx0hx右导数存在,它并不是可导的充分条件,故(A)不对.(2)对于答案(B)与(C),因所给极限式子中不含点a处的函数值f(a),因此与导数概念不相符和.例如,若取

1,xaf(x)

0,xa则(B)与(C)两个极限均存在,其值为零,但limf(x)0f(a)1,从而f(x)在xaxa处不连续,因而不可导,这就说明(B)与(C)成立并不能保证f(a)存在,从而(B)与(C)也不对.(3)记xh,则x0与h0是等价的,于是 limf(a)f(ah)hh0limf(ah)f(a)hh0limf(ah)f(a)h

h0x所以条件D是f(a)存在的一个充分必要条件.例3(00103)设f(0)0,则f(x)在点x0可导的充要条件为()x0limf(ax)f(a)f(a)(A)lim1h1h2h0f(1cosh)存在(B)lim1h1hh0f(1e)存在

h(C)limh02f(hsinh)存在(D)limh0f(2h)f(h)存在

答案 B

解题思路

(1)当h0时, 1coshhh02limf(1cosh)h2h0lim2f(1cosh)f(0)h21.所以如果f(0)存在,则必有

limf(1cosh)f(0)1coshh0lim1coshh2h0若记u1cosh,当h0时,u0,所以

f(1cosh)f(0)f(u)f(0)limlimf(0)h0h01coshu于是

limf(1cosh)h2h012f(0)

1h2这就是说由f(0)存在能推出limh0f(1cosh)存在.h0,而不是u0,因此 但是由于当h0时,恒有u1cos1f(x)f(0)f(0)limlim2f(1cosh)存在只能推出存在,而不能推出f(0)h0hx0x存在.

(2)当h0时, 1eho(h),于是

hlimf(1e)hhh0limf(ho(h))f(0)hh0limf(ho(h))f(0)ho(h)

h0 由于当h0时, ho(h)既能取正值,又能取负值,所以极限limf(ho(h))f(0)ho(h)h0存在与limf(h)f(0)hh0f(0)存在是互相等价的.因而

极限lim1hh0hf(1e)存在与f(0)存在互相等价.(3)当h0时, 用洛比塔法则可以证明limlimf(hsinh)h2h0,所以 6hf(hsinh)f(0)hsinhlimlimh 3h0h0hsinhhh03hsinh1由于h0,于是由极限limf(hsinh)f(0)hsinhh0limhsinhh3h0h存在未必推出hsinh(4)f(x)在点x0可导一定有(D)存在,但(D)存在不一定f(x)在点x0可导.h0limf(hsinh)f(0)也存在,因而f(0)未必存在.例 4(98203)函数f(x)(xx2)|xx|有()个不可导点

(A)0(B)1(C)2(D)3

答案 C

解题思路 当函数中出现绝对值号时,不可导的点就有可能出现在函数的零点,因为函数零点是分段函数的分界点.因此需要分别考察函数在点x00,x11,x21考察导数的存在性.解 将f(x)写成分段函数:

23(x22(xf(x)2(x(x2x2)x(1x),x2)x(x1),x2)x(1x),x2)x(x1),2222x1,1x0,0x1,1x.(1)在x00附近,f(x)写成分段函数:

22x(xx2)(x1),x023 f(x)(xx2)|xx|22x(xx2)(1x),x0容易得到

f(x)f(0)22f(0)limlim(xx2)(x1)2

x0x0xf(x)f(0)22f(0)limlim(xx2)(1x)2

x0x0x由于f(0)f(0),所以f(0)不存在.(2)在x11附近,f(x)写成分段函数:

2x(1x)(xx2)(1x),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1由于f(1)f(1),所以f(1)不存在.(3)在x21附近,f(x)写成分段函数:

2x(1x)(xx2)(x1),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(1)limf(x)f(1)x1x0x1由于f(1)f(1)0,所以f(1)存在.x1f(1)limx1f(x)f(1)limx1x(x1)(x22x2)0

limx(x1)(xx2)0

综合上述分析,f(x)有两个不可导的点.例5(95103)设f(x)具有一阶连续导数,F(x)f(x)(1|sinx|),则f(0)0是F(x)在x0处可导的()

(A)必要但非充分条件

(B)充分但非必要条件

(C)充分且必要条件

(D)既非充分也非必要条件

答案 C

分析 从F(x)在x0的导数定义着手.将F(x)f(x)(1|sinx|)f(x)f(x)|sinx| 解

F(x)F(0)f(x)f(0)f(x)|sinx|f(0)|sin0|limlimF(0)lim

x0x0x0x0x0x0

f(0)f(0)

f(x)f(0)f(x)|sinx|f(0)|sin0|F(x)F(0)limlimF(0)lim

x0x0x0x0x0x0f(0)f(0)

于是推知F(0)F(0)的充分必要条件是f(0)0. 例6(92103)设函数f(x)3xx|x|,则使f32(n)(0)存在的最高阶数n().(A)0

(B)1(C)

2(D)3

答案 C

解题思路 应先去掉f(x)中的绝对值,将f(x)改写为分段函数

2x3 f(x)3xx|x|34x32x0x0x0x0

2x3 解 由f(x)3xx|x|34x32

6x2得f(x)212xx0x0

12x且f(x)24x又f(0)limx012 f(x)x024x0x0x0

f(x)f(0)x0limx02x03x00,f(0)limf(x)f(0)x0x0limx04x03x020

所以f(0)存在.f(0)limf(x)f(0)x0x0limx06x0x012x0 00 f(0)limf(x)f(0)x02limx0x0x0所以f(0)存在.f(0)limf(x)f(0)x0x0limx012x0x012

x0即f(0)f(0).因而使fx0f(0)limf(x)f(0)24

x0(n)(0)存在的最高阶数是2.x0lim24x0

例7 f(x)cos|x|x2|x|存在的最高阶导数的阶数等于()

A

0

B 1

C 2

D 3 答案 C 解题思路 注意cos|x|cosx,所以只需考察x|x|在点x0的情况.例8(96203)设0,f(x)在区间(,)内有定义,若当x(,)时,恒有f(x)x,则x0必是f(x)的()

(A)间断点,(B)连续而不可导的点,(C)可导的点,且2f'(0)0

(D)可导的点,且f'(0)0

答案

C

解 由题目条件易知f(0)0,因为

|所以由夹逼定理

f(x)f(0)x||f(x)xf(x)x||x2x|

2lim|x0f(x)f(0)x|lim|x0|lim|x0xx|0

于是f(0)0.1ex,x0, 则f(0)为()

例9(87103)设f(x)x0,x0.

1(A)0

(B)

(C)1

(D)1

2答案

(C)

解题思路

因f(x)为分段函数,故它在分段点处的导数应按导数的定义,又由于是未定式,可用洛必达法则求极限.200型解

1e f(0)limx2f(x)f(0)x0ulimx0x0xx00lim1exx2x02x

2当u0时,e 1与u是等价无穷小,所以当x0时,1e与x是等价无穷小.因而

2lim1exx2x021

12,则x0时,f(x)在x0处的微分dy与

例10(88103)设f(x)可导且f(x0)x比较是()的无穷小.(A)等价(B)同阶(C)低阶(D)高阶

答案 B

解题思路

根据yf(x)在xx0处的微分的定义:dyf(x0)x.x12 解 limlim,可知dy与x是同阶的无穷小.x0xx0x21xsin,x0

例11(87304)函数f(x)在x0处()xx00,dy

(A)连续,且可导

(B)连续,不可导

(C)不连续

(D)不仅可导,导数也连续

答案 B

解题思路

一般来说,研究分段函数在分段点处的连续性时,应当分别考察函数的左右极限;在具备连续性的条件下,为了研究分段函数在分界点处可导性,应当按照导数定义,或者分别考察左右导数来判定分段函数在分段点处的导数是否存在.因此,本题应分两步:(1)讨论连续性;(2)讨论可导性.解(1)讨论函数在点x0处的连续性

10f(0),可知函数f(x)在点x0处是连续的.由于limf(x)limxsinx0x0x

(2)讨论函数在点x0处的可导性

1xsin0f(x)f(0)1xlimlimsin

由于lim不存在,所以,函数f(x)在点

x0x0x0x0xxx0处不可导.x

例12 设f(x)p必须满足()p1sin01x,x0,x0 在点x0可导,但是f(x)导数在点x0不连续,则

A0p1

B1p2

C0p2

D1p答案 B

解题思路

(1)当p1时,下述极限不存在: x因此f(0)不存在.当p1时, x0limf(x)f(0)xsinlimx0p1xlimxp1sin1

x0xxx所以f(0)0.x0limf(x)f(0)xsinlimx0p1xlimxp1sin10

x0xx这就是说,只有当p1时, f(0)才存在,所以选项A,C可以被排除.(2)当p1时

0,x0 f(x)11p1p2sinxcos,x0pxxx当且仅当p20,即p2时,limf(x)0f(0),所以当且仅当1p2时,x0f(x)在点x0可导,但是f(x)在点x0不连续.例13(95403)设f(x)可导,且满足条件limf(1)f(1x)2x12x01,则曲线yf(x)在(1,f(1))处的切线斜率为()(A)2,(B)2,(C),(D)1

答案 B

解 记ux,则有

f(1)f(1x)1f(1u)f(1)1limlimf(1)x02x2u0u2

例1

4设yln(12x),则y

(A)(10)()

9!(12x)10

(B)9!(12x)10

(C)10!2910(12x)

(D)9!21010(12x)

答案 D

解题思路

求高阶导数的一般方法是: 先求出一阶、二阶、三阶导数;找出规律,即可写出高阶导数.2y, 12x21y(2)(1)(2)(1)(2)

22(12x)(12x)y(2)(1)(2)(2)2(12x)3

y(10)9!21010(12x).例17

(90103)设函数f(x)有任意阶导数,且f(x)f(x),则f(n)(x)(n1),(n2).n1(A)n!f(x)(B)nf(x)(C)f2n(x)(D)n!f2n(x)

答案 A

解题思路 这是一个求高阶导数的问题,涉及到求抽象函数的导数.解

由f(x)有任意阶导数且f(x)f(x),可知

2f(x)f(x)32f(x)f(x)2f(x)ff(x)2f(x)32f(x)f(x)3!f2(n)n12(x)2f(x),(x)

34依此由归纳法可知 f(x)n!f(x)

注意(1)当n1,n2时虽然(B)也正确,但当n2就不正确了,所以将(B)排除之;

222(2)在求导数f(x)时,可将函数f(x)看成是由yt与tf(x)复合而成的,(t)f(x)2tf(x)2f(x)f(x).(初学者可能会这样做:f(x)2f(x),后面丢掉一个因子f(x).则根据复合函数的求导法则,故f(x)222

例18(91303)若曲线yxaxb和2y1xy在点(1,1)处相切,其中

23a,b是常数,则()(A)a0,b

2(B)a1,b3

(C)a3,b

1(D)a1,b1

答案 D

解题思路

两曲线在某点相切就是指两曲线在此公共点处共一条切线,从而两曲线的斜率也应相等.解

曲线yxaxb在点(1,1)处的斜率是

2k1(xaxb)2x1(2xa)x132a

另一条曲线是由隐函数2y1xy确定,该曲线在点(1,1)处的斜率可以由隐函数求导数得到: 对于方程2y1xy两边求导得到2y3xyyy,解出y得到此曲线在点(1,1)处的斜率为

k2yx1y1323y3223xy1

x1y12令k1k2,立即得到a1.再将a1,x1,y1代入yxaxb中得出b1.例19设f(x),g(x)定义在(1,1),且都在x0处连续,若g(x)x0f(x)x,则()x02(A)limg(x)0且g'(0)0,(B)limg(x)0且g'(0)1

x0x0(C)limg(x)1且g'(0)0

(D)limg(x)0且g'(0)2

x0x0 答案 D

解题思路 分析函数f(x)的表达式,并运用f(x)在x0处连续这一关键条件.解 既然f(x)在x0处连续,于是必有limf(x)limx0g(x)xx02,于是必有limg(x)0.于是又有g(0)limx0g(x)g(0)xx0limg(x)xx02.1cosx 例 20(99103)设f(x)x2xg(x)x0x0 其中g(x)是有界函数,则f(x)在x0处()(A)极限不存在(B)极限存在,但不连续

(C)连续,但不可导(D)可导

答案 D

解题思路

若能首先判定f(x)在x0处可导,则(A)、(B)、(C)均可被排除.解

x f(0)lim21f(x)f(0)x0x0x2limx01cosx3limx023limx0x2x)

2x220

(x0时1cosx~ f(0)lim2f(x)f(0)x0xx0由于f(x)在x0点的左导数等于右导数,因而 f(x)在x0处可导.x0x0limxg(x)2limxg(x)0(g(x)是有界函数)

 例21 设f(x)sinx,则(f(f(x)))()A.cos(sinx)cosx B.sin(sinx)cosx C.cos(cosx)sinx D.sin(cosx)sinx

答案 A

例 22 设f(x)是可导函数,则()A.若f(x)为奇函数,则f(x)为偶函数B.若f(x)为单调函数C.若f(x)为奇函数,则f(x)为奇函数D.若f(x)为非负函数 答案 A

解题思路 根据导数定义,利用函数的奇性.解 由于f(u)f(u),所以 ,则f(x)为单调函数 ,则f(x)为非负函数

f(x)limlimf(xx)f(x)xf[x(x)]f(x)x0limf(xx)f(x)x

x0x因此f(x)为偶函数.x0f(x)例23 设yesinsin22x,则dy()sin2 B.2eA.esinx C.2e 答案 D

解题思路 运用复合函数微分法

例 24 设f(0)存在,lim(1x0xxsin2xsincosx D.e2xsin2x

1cosf(x)sinx1)xe,则f(0)()A.0 B.1 C.答案 C

解 由 C.e

lim(1x01cosf(x)sinx1)xe

可以知道当x0时,有

lim(参阅第一章1.5的例2)

x011cosf(x)1 xsinxf2当x0时,sinx与x是等价无穷小,1cosf(x)与

(x)2是等价无穷小.于是

f(x)11cosf(x)1limlim1 2x0xx0sinx2x又因为f(0)存在,所以此式又推出 f(0)limf(x)xx022.1,x0arctan 例 25 设f(x) 在点x0可导,则()xaxb,x0A.a1,b2 B.a1,b0 C.a1,b2 D.a1,b2

答案D

解题思路 先考察函数在点x0左右极限,确定连续性,再考察左右导数.由可微性最终确定a,b.解

1,所以b.(1)limf(x)lim(axb)b,limf(x)limarctanx0x0x22x0x0于是f(0)2.(2)f(0)a,f(0)limx0f(x)f(0)arctanlimx01xx2

xarctan1xx2: 以下需要用洛比塔法则求极限limx0

arctanlimx01x2lim(arctan1xx2)limx01x2xx0于是由f(0)f(0)推出a1

11

例26.(93303)若f(x)f(x),且在(0,)内f(x)0,f(x)0,则f(x)在(,0)内必有

(A)f(x)0,f(x)0(B)f(x)0,f(x)0

(C)f(x)0,f(x)0(D)f(x)0,f(x)0 答案 C

解体思路 所给函数显然是奇函数,因此f(x)是偶函数,f(x)是奇函数.解 由f(x)0,x(0,)知f(x)0,x(,0);由f(x)0,x(0,)知f(x)0,x(,0).

第四篇:浅谈数列极限的求法

浅谈数列极限的求法

龙门中小李海东

摘要:本文主要介绍了数列极限的几种求法,并通过一个例题说明利用函数极限的求法,帮助寻找数列极限的方法,帮助学生理解和掌握求极限的方法。

关键词:数列极限方(求)法说明

引言:在初等代数,高等代数学习过程中发现或多或少都涉及到数列极限的有关内容,在数学分析中数列极限是极其重要的章节,数列极限是学习函数极限的基础和铺垫,数列极限的求法和函数极限求法在某种程度上是彼此相似的,所以可以对照学习,也可以用一种求极限的方法,求出另外一种极限,给解答习题带来一定的灵活性。方法也是比较灵活的。下面就数列极限的求法略作浅谈,且举例说明。

一 利用单调有界准则求极限

预备知识:若数列an收敛,则an为有界数列,即存在正数M,使得对一切正整数n,有 anM.此方法的解题程序为:

1、直接对通项进行分析或用数学归纳验证数列an单调有界;

2、设an的极限存在,记为limanA代入给定的表达式中,则该式变为A的代数方n

程,解之即得该数列的极限。

举例说明:

例:若序列an的项满足a1a(a0)且an11aan,(n1,2,),试证2an

an有极限并求此极限。

解由a1a

21a1a12a2a1aa1aa22aa2a111

用数学归纳法证明aka需注意

22a2aka1a1akaka.ak2ak2akak

又anan12a1aana0 n2an2an

an为单调减函数且有下界。

令其极限为A 由 an1

1a

an有: 2an

1a

an2an

liman1

n

即A

1a

A 2A

AaA

a(A0)

n

从而liman

a.二 利用数列极限的定义求数列的极限

大家知道,数列极限的定义是这样的:设an为数列,a为定数,若对任给的正数,总存在正整数N,使得当nN时,有ana,则称数列收敛于a,定数a称为数列

anan的极限,记作:limn

a,当数列不单调时,我们就用此定义来求极限,其步骤:

1、先根据数列极限的唯一性求出极限;

2、再去证明极限的存在性。举例说明:

例:设x12, xn12解1.令limxnt

n

(n1)求::limxn.nxn

则limxn1lim2

n

n



xn

 

即t2t12xn2

t2 t12(t12舍去)

1t

2.证明其极限的存在性对0xnt(2)(2)xn1t

xn1txn2t1xn1t ttxn1442

24n1

(当n足够大)

1xn1

x144n1

由极限的下定义可得:limxnt0

n

limxnt1

n

2.三 利用数列夹逼准则求数列极限

回顾一下:设收敛数列an数列{cn}满足:存在正数N0,当nN0,bn都以a为极限,时,有:ancnbn.则数列{cn}收敛,且limcna.n

此方法一般通过放大或缩小分母来找出两边数列的通项,从而达到求极限的目的。

举例说明:

11

例:求 lim12.n

nn

111n1

解由11212

nnnn

n1n11

1112 (n1)(n1)n1n1

n

n

n

n

nnn

1

显然 lim1e

n

n

nn1

111lim11并且 lim1e nn

n1n1n1

n

11

lim12e.n

nn

四 利用重要公式求极限或转化为函数的极限

此方法必须在牢记重要极限的形式和其值的基础上,对所求式子作适当变形,从而达到求其极限的目的,这种方法灵活,有相当的技巧性。

举例说明:

n

n1

n11

例:求 limsin.n

nnn

n1

n11

解limsin

n

nnn

=lim

n1

nn

n1

sin1

nsin1n1n

=lim1

n

1n

n1

=lim1=e11=e

n

111nn1

n

n

sin

例:求极限lim

sinx

xasina

xa

1xa

.解lim

sinx

xasina

xa

1xa

=lim1

sinxsina

sina

1sinacosa

xacosasina

xaxa2cossin=lim1xasina

xa2cosasin

=lim1xasina

sina

cosa(xa)



cosasina

sina

cosa(xa)xa2cosasin=lim1xasina

ctga

=e

ctga

sin

xaxa

~ 22

五 利用数列极限与函数的极限等值关系来求极限

此方法把数列极限化成函数形式的极限,而后回代,从而求出数列极限的一种方法。

举例说明:

abc

.例:若 a,b,c0,求limn3

解先考虑:

1

axbxcx

ln

3

n



xln

x

1

axbxcx

3 

1

axbxcx

而limxln

x3

 

1xxxlnabcln3=lim

x1

x

2axlna2bxlnb2cxlnc=lim

x

12x

1x

1x

1x

1x1x1x

=lim

alnablnbclnc

abc

1x

1x

1x

x

=lnabc

c

 limn3

n

1

axbxcx

=lim

n3

 

n

=lime

n

111axbxcxxln



=e

lnabc

3

=e

lnabc3

=abc

通过上面简单的对求数列极限的一般方法加以归纳,并举例说明,就可以在我们大脑中造成深刻的印象,更好地掌握函数和数列极限的求法。但数列极限的求法并不限于这几种方法,或许还有很多种,希望大家在学习过程中善于归纳总结求数列极限的方法,以便我们共勉。

参考文献:

[1]程其襄.数学分析第三版[M].高等教育出版社,1981(4)[2]谢惠民.数学分析习题课讲义[M].高等教育出版社,2003(7)

[3]周建莹 李正元.高等数学解题指南[M].北京大学出版社,2002.(10)[4]王汝发.高等数学解题方法[M].兰州大学出版社,1994.(3)

第五篇:浅谈函数极限的求法

浅谈函数极限的求法

摘要:函数极限是数学分析的基本内容之一,也是解决其它问题的基础。如何求出已知函数的极限是学习微积分必须掌握的基本技能。本文系统地介绍了利用定义、两个重要极限、无穷小量代换、洛必达法则、夹逼准则等求极限的方法,并结合具体的例子,指出了在解题中常遇见的一些问题。

关键词: 函数极限夹逼准则等价无穷小量洛必达法则泰勒展开式无穷小量

引言

极限研究的是函数的变化趋势,在自变量的某个变化过程中,对应的函数值无限解决某个确定的数,那这个数就是函数的极限了。极限是数学分析中一个非常重要的概念,是贯彻数学分析的一条主线,它将数学分析的各个知识点连在一起,所以,求极限的方法显得尤为重要的,我们知道,函数是数学分析研究的对象,而极限方法则是数学分析中研究函数的重要方法,因此怎样求极限就非常重要。

数学分析中所讨论的极限大体上分为两类:一类是数列的极限,一类是函数的极限。两类极限的本质上是相同的,在形式上数列界限是函数极限的特例。因此,本文只就函数极限进行讨论。函数极限运算是高等数学的一个重要的基本运算,一部分函数的极限可以通过直接或间接的运用“极限四则运算法则”来求解,而另一部分函数极限需要通过特殊方法解决。求函数极限的方法较多,但是每种方法都有其局限性,都不是万能的。对某个具体的求极限的问题,我们应该追求最简便的方法。在求极限的过程中,必然以相关的概念、定理以及公式为依据,并借助一些重要的方法和技巧。本文给出了十七种求极限的方法,每种方法都是以定理或简述开头,然后以例题来全面展示具体的求法。下面我们通过对一元函数和二元函数极限的求法来进行分类讨论

一元函数极限的求法

1.1利用函数定义求极限

利用函数极限的定义验证函数的极限。设函数f在点x0的某空心邻域,使得当U0(x0;)内有定义,A为定数。若对任给的0,存在正数()

0xx0时,有f(x)A成立,则称函数f当x趋于x0时以A为极限,记作limf(x)A或f(x)A(xx0)。xx0

x24例1设f(x),证明limf(x)4.x2x

2x244x24x2,证明: 由于当x2时,f(x)4x2

故对给定的0,只要取,则当0x2时,有f(x)4.这就证明了limf(x)4.x2

(1)定义中的正数,相当于数列极限N定义中的N,它依赖于,但也不是由所惟一确定。一般来说,愈小,也相应地要小一些,而且把取得更小一些也无妨,如在题1中可取

2或

3等等。

(2)定义中只要求函数f在点x0的某个空心领域内有定义,而一般不考虑f在点x0处的函数值是否有定义,或者取什么值。这是因为,对于函数极限我们所研究的是当x趋于x0过程中函数值的变化趋势。如在题1中函数f在点x2是没有定义的,但当x2时,f的函数值趋于一个定数。

1.2 利用单侧极限求函数极限

这种方法适用于求分段函数在分段点处的极限。首先必须考虑分段点处的左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。如符号函数sgnx,由于它在x0处的左、右极限不相等,所以limsgnx不存在。x0

f(x)limf(x)A.定理1 limf(x)Alimxx0xx0xx0

2xx0例2 : f(x)0 x0,求f(x)在x0处的极限.1x2x0

f(x)lim2x1,解: limx0x0

f(x)lim1x1,limx0x0

2f(x)limf(x)1, limx0x0

 limf(x)1.x0

1.3 利用函数极限的四则运算法则求极限

定理2 若极限limf(x)和limg(x)都存在,则函数f(x)g(x),f(x)g(x),xx0xx0

当xx0时也存在极限,且有

①limxx0

xx0f(x)g(x)limf(x)limg(x); xx0xx0xx0xx0②limf(x)g(x)=limf(x)limg(x);

limf(x)f(x)f(x)xx0③又若limg(x)0,则在xx0时也存在极限,且有lim.xx0xx0g(x)g(x)limg(x)

xx0

利用函数极限的四则运算法则求极限,条件是每项或每个因子极限都存在,一般所给的变量都不满足这个条件,如0,等情况,都不能直接用四则运算法0

则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握因式分解、有理化运算等恒等变形。

(xtanx1).例3:求limx4

解: 由xtanxxsinx2及limsinxsinlimcosx,有 xxcosx42lim(xtanx1)=limxx4limsinxx4xlimcosxxlim1x41.1.6 利用函数的连续性求函数极限

参考文献:

[1] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2001.[2] 陈传璋,朱学炎等.数学分析(第二版)[M].北京:高等教育出版社,1998.[3] 张再云,陈湘栋等,极限计算的方法与技巧[J].湖南理工学院学报(自然科学版),2009,22(2):16-19.[4]欧阳光中.数学分析[M].上海:复旦大学出版社,2002.[5]钱吉林.数学分析解题精粹[M].武汉:崇文书局出版社,2001

下载高数极限求法总结word格式文档
下载高数极限求法总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学分析中极限的求法总结

    数学分析中极限的求法总结1.1 利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数......

    高数_第1章_极限计算方法总结

    极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限,课本42页的表格必须认真填写并掌握。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到......

    函数极限的若干求法 20121109

    高等数学中极限的分析与研究 【摘 要】极限是高等数学中一个很重要的基础知识点,是微积分的前提,因此函数极限的求解是非常重要的。本文针对高等数学中极限的求解方法进行了一......

    高数课件-函数极限和连续范文合集

    一、函数极限和连续自测题 1,是非题 (1)无界变量不一定是无穷大量 (2)若limf(x)a,则f(x)在x0处必有定义 xx012x(3)极限lim2sinxlimx0 xx33x2,选择题 (1)当x0时,无穷小量1x1x是x的 A.......

    高数复习方案(函数和极限)

    计算机科学与技术09级学生工作委员会—学习部函数与极限1. 集合:具有某种特性定性质的事物的总体成为集合组成集合的事物叫做元素设元素为a集合为M那么aM交集,子集,属于,不属于......

    高数:总结求极限的常用方法5篇

    总结求极限的常用方法,详细列举,至少4种 极限定义法 泰勒展开法。 洛必达法则。 等价无穷小和等价无穷大。 极限的求法 1. 直接代入法 适用于分子、分母的极限不同时为零或不......

    高数极限习题及答案(精选多篇)

    练习题 1. 极限 lim1xx3x32xlimx5x6x8x15x1x222x3limx1x12x1limx x10limaxbxx1 已知, 求常数a, b. xsin(6) 2limx0x1xlimxx21sinx(7) 12x2 (8) limxx012x(9......

    极限连续-高数竞赛超好

    高数竞赛例题 第一讲 函数、极限、连续 例1. 例2. 例3. 例4. 例5. 例6. 例7. 例8. 例9. lim1nn(1n2nn). lim135(2n1)246(2n)n limx0x35x,其中[]为取整函数 lim1cosx......