数学分析中极限的求法总结

时间:2019-05-13 16:04:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学分析中极限的求法总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学分析中极限的求法总结》。

第一篇:数学分析中极限的求法总结

数学分析中极限的求法总结

1.1 利用极限的定义求极限

用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。

例:limfxA的ε-δ 定义是指:ε>0,δ=δ(x0,ε)>0,0<|x-x0|xx0

<δ|f(x)-A|<ε 为了求δ 可先对x0的邻域半径适当限制,如然后适当放

大|f(x)-A|≤φ(x)(必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:

|x+a|=|(x-x0)+(x0+a)|≤|x-x0|+|x0+a|<|x0+a|+δ

1域|x+a|=|(x-x0)+(x0+a)|≥|x0+a|-|x-x0|>|x0+a|-δ1

从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-x0 |<δ 时,就有|f(x)-A|<ε.xx...xna.例:设limxna则有lim1

2nnn

xn-a于是当证明:因为limxna,对0,N1N1(),当nN1时,n2

xx...xnxx...xnna12a12 nN1nn

0

其中Ax1ax2axN1是一个定数,再由

解得n2AA,n2xx...xn2A ,故取NmaxN1,当nN12+=。n22

1.2 利用极限的四则运算性质求极限

定理[1]:若极限limf(x)和limg(x)都存在,则函数f(x)g(x),f(x)g(x)当xx0xx0

xx0时也存在且

①limf(x)g(x)limf(x)limg(x)xx0xx0xx0

②limf(x)g(x)limf(x)limg(x)xx0xx0xx0

limf(x)f(x)f(x)xx

又若c0,则在xx0时也存在,且有lim.0

xx0g(x)g(x)limg(x)

xx0

利用该种方法求极限方法简单,但要注意条件是每项或每个因子极限存在,0

一般情况所给的变量都不满足这个条件,例如出现, 等情况,都

0

不能直接运用四则运算法则,必须对变量进行变形。变形时经常用到因式分解、有理化的运算以及三角函数的有关公式。

31()例:求lim x11x31x

解:由于当x1时,与的极限都不存在,故不能利用“极限的和等3

1x1x

于和的极限”这一法则,先可进行化简

313(1xx2)(1x)(2x)(2x)

这样得到的新函数当=

1x31x1-x3(1x)(1xx2)(1xx2)

x1时,分子分母都有极限且分母的极限不为零,可用商的极限法则,即

31(2x)lim()=lim=1 x11x31xx1(1xx2)

1.3 利用函数的连续性求极限

定理[2]:一切连续函数在其定义区间内的点处都连续,即如果x0是函数f(x)的定义区间内的一点,则有limf(x)f(x0)。

xx0

一切初等函数在其定义域内都是连续的,如果f(x)是初等函数,x0是其定义域内一点,则求极限limf(x)时,可把x0代入f(x)中计算出函数值,即

xx0

xx0

limf(x)=f(x0)。

对于连续函数的复合函数有这样的定理:若u(x)在x0连续且u0(x0),yf(u)在u0处连续,则复合函数yf[(x)]在x0处也连续,从而

xxo

limfxfxo或limfxflimx。

xxo

xxo

lnsinx 例:lim

x

解:复合函数x=



在处是连续的,即有limlnsinx=lnsinln10

22x

1.4 利用无穷小的性质求极限

我们知道在某一过程中无穷大量的倒数是无穷小量,有界变量乘无穷小是无穷小,对一些特殊的函数而言用其他方法很难求得,只能用这种方法来求。

4x-7

例:求lim2

x1x3x2

解:当时x1,分母的极限为零,而分子的极限不为零,可先求处所给函数倒

4x-7x23x2

=。=0,故lim2数的极限lim

x1x1x3x24x-7

1.5 利用单调有界原理求极限

这种方法是利用定理:单调有界数列必有极限,先判断极限存在,进而求极限。

例:求

n解:令xn

xn1

n,即xn1xn,所

以数列x

n单调递增,由单调有界定理知,A,limxn1,即

A

n

n,所以

n1。2

1.6 利用夹逼准则求极限[3]

已知{xn},{yn},{zn}为三个数列,且满足:(1)ynxnzn,(n1,2,3,);(2)limyna,limzna。

则极限limxn一定存在,且极限值也是a,即limxna。利用夹逼准则求极

n

n

n

n

限关键在于从xn的表达式中,通常通过放大或缩小的方法找出两个同极限值的数列使得ynxnzn。

例:xn

...xn的极限

解:因为xn单调递减,所以存在最大项和最小项

xn

...

xn

...

xnn

又因为n,则limxn1。

x

第二篇:浅析极限的若干求法

科技信息 ○高校讲台○ SCIENCE & TECHNOLOGY INFORMATION

2007 年第 23 期

浅析极限的若干求法

孟金涛

(郑州航空工业管理学院数理系河南 郑州 450015)

摘要: 极限理论是高等数学的基础, 本文给出了极限的若干求法, 并用具体实例加以说明。关键词: 极限;表达式;等价无穷小

极限理论是高等数学的基础, 极限问题是高等数学中困难问题之

a +a +⋯+a

xx

x n

一。中心问题有两个: 一是证明极限的存在性, 二是求极限的值。两个 问题密切相关: 若求出了极限的值, 自然极限的存在性也就证明了。反 之, 证明了存在性, 常常也就为求极限铺平了道路。

利用定义证明极限的存在, 有一先决条件, 即事先要知道极限的 猜测值。通常情况下我们都不知道表达式的极限值, 那么如何根据表

→0

a1

+lim

x→0

+⋯+lim x a21 x→0 x→

1解】【(1)将根式有理化, 于是有原式为

x

解】令 t=-x,则 x→∞时, t→∞。于是lim(1-)=lim(1+)= 【

x→∞ t→∞ x t e

x

-t

=1 lim x→0x

(enπ)=sin2 【π, 由于初等函数在有定义的地方都连续,=sin

π

=sin项趋向于零求极限。1+

(1)利用收敛级数的通项趋向于零求极限。(2)利用收敛级数的余 2 π2lim =1。

原极限=sinn→∞ 2 +

1n

12×13×⋯×(n+10)例 9】求下列极限lim 【x, 其中(1)xn= 11×

十一、利用导数定义求极限n→∞ n

2×5×8⋯×(3n-1)

f(x-3h)-f(x0)例 11】设 f(x)在 x0 处可导, 求lim 0 【(2)xn=⋯+ h→0 2 2

2n)n+1 *(2n)

原极限=lim= 0 =arctan1= π 20n→∞ n i=11+x 4 i)

九、利用收敛级数的性质求极限,-

n+n +n

*)-

*

xn+1解】【(+当 x→∞时), 所以正项级数 1)由于 +x

n 3n+2 3 n =

1收敛, 从而可得通项 xn→0(当 n→∞时)。

解】由导数定义有【

f(x03h)-f(x0)

h→0

lim

h→0

=lim

h

·(1

=0

Mathematics of Computation,1995,64:1147-1170.[ 2] A.R.Conn and Ph.L.Toint.An algorithm using quadratic interpolation for unconstrained derivative free optimization[ A].In G.Di Pillo and F.Gianessi, editors,Nonlinear Optimization and Applications [ M] ,New York, Plenum Publishing, 1996,27-47.[ 3] A.R.Conn,K.ScheinbergandPh.L.Toint.Ontheconvergenceof derivative-free methods for unconstrained optimization[ A].In A.Iserles andM.Buhmann,editors,ApproximationTheoryandOptimization: Tributes to M.J.D.Powell [ C] , Cambridge,UK,Cambridge University Press, 1997,83-103.[ 4] J.J.More and D.C.Sorensen.Computing a trust region step [ J].SIAM J.Sci.Stat.Comput,1983,4(3):553-572.Kef

≤Kk

2Kef

max$△k,△ kKgk

△k

(上接第 480 页)实可行的财务风险防范措施。

从单个企业来讲, 收益不足是导致财务风险的主要因素, 经营收 入扣除经营成本费用税金等经营费用后是经营收益, 如果从经营收益 开始就已经亏损, 说明企业已近破产倒闭, 即使总收益为盈利, 可能是 由于非主营业务或营业外收入所形成利润增加, 如出售手中持有有价 证券、固定资产等;如果经营收益为盈利, 而总收益为亏损, 问题不太 严重的话,说明已经出现危机信号, 但是可以正常经营的, 这是因为企 业的资本结构不合理, 举债规模大,利息负担重所致。企业必须针对财

务指标的评价采取有效措施加以调整。

综上所述,利用财务指标的评价, 找出企业的薄弱环节, 制定出企 业的筹资活动、投资活动、资金回收、收益分配策略及措施, 防范规避 财务风险,才能使企业长久稳定健康发展。

[ 1] 温素彬, 薛恒新.基于科学发展观的企业三重绩效评价模型[J].会计

研究.[ 2] 王化成, 刘俊勇, 孙薇.企业业绩评价[M].北京: 中国人民大学出版

参考文社.献

488

第三篇:高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致 极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况 0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)

E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

(从网上发现,谢谢总结者)

第四篇:浅谈数列极限的求法

浅谈数列极限的求法

龙门中小李海东

摘要:本文主要介绍了数列极限的几种求法,并通过一个例题说明利用函数极限的求法,帮助寻找数列极限的方法,帮助学生理解和掌握求极限的方法。

关键词:数列极限方(求)法说明

引言:在初等代数,高等代数学习过程中发现或多或少都涉及到数列极限的有关内容,在数学分析中数列极限是极其重要的章节,数列极限是学习函数极限的基础和铺垫,数列极限的求法和函数极限求法在某种程度上是彼此相似的,所以可以对照学习,也可以用一种求极限的方法,求出另外一种极限,给解答习题带来一定的灵活性。方法也是比较灵活的。下面就数列极限的求法略作浅谈,且举例说明。

一 利用单调有界准则求极限

预备知识:若数列an收敛,则an为有界数列,即存在正数M,使得对一切正整数n,有 anM.此方法的解题程序为:

1、直接对通项进行分析或用数学归纳验证数列an单调有界;

2、设an的极限存在,记为limanA代入给定的表达式中,则该式变为A的代数方n

程,解之即得该数列的极限。

举例说明:

例:若序列an的项满足a1a(a0)且an11aan,(n1,2,),试证2an

an有极限并求此极限。

解由a1a

21a1a12a2a1aa1aa22aa2a111

用数学归纳法证明aka需注意

22a2aka1a1akaka.ak2ak2akak

又anan12a1aana0 n2an2an

an为单调减函数且有下界。

令其极限为A 由 an1

1a

an有: 2an

1a

an2an

liman1

n

即A

1a

A 2A

AaA

a(A0)

n

从而liman

a.二 利用数列极限的定义求数列的极限

大家知道,数列极限的定义是这样的:设an为数列,a为定数,若对任给的正数,总存在正整数N,使得当nN时,有ana,则称数列收敛于a,定数a称为数列

anan的极限,记作:limn

a,当数列不单调时,我们就用此定义来求极限,其步骤:

1、先根据数列极限的唯一性求出极限;

2、再去证明极限的存在性。举例说明:

例:设x12, xn12解1.令limxnt

n

(n1)求::limxn.nxn

则limxn1lim2

n

n



xn

 

即t2t12xn2

t2 t12(t12舍去)

1t

2.证明其极限的存在性对0xnt(2)(2)xn1t

xn1txn2t1xn1t ttxn1442

24n1

(当n足够大)

1xn1

x144n1

由极限的下定义可得:limxnt0

n

limxnt1

n

2.三 利用数列夹逼准则求数列极限

回顾一下:设收敛数列an数列{cn}满足:存在正数N0,当nN0,bn都以a为极限,时,有:ancnbn.则数列{cn}收敛,且limcna.n

此方法一般通过放大或缩小分母来找出两边数列的通项,从而达到求极限的目的。

举例说明:

11

例:求 lim12.n

nn

111n1

解由11212

nnnn

n1n11

1112 (n1)(n1)n1n1

n

n

n

n

nnn

1

显然 lim1e

n

n

nn1

111lim11并且 lim1e nn

n1n1n1

n

11

lim12e.n

nn

四 利用重要公式求极限或转化为函数的极限

此方法必须在牢记重要极限的形式和其值的基础上,对所求式子作适当变形,从而达到求其极限的目的,这种方法灵活,有相当的技巧性。

举例说明:

n

n1

n11

例:求 limsin.n

nnn

n1

n11

解limsin

n

nnn

=lim

n1

nn

n1

sin1

nsin1n1n

=lim1

n

1n

n1

=lim1=e11=e

n

111nn1

n

n

sin

例:求极限lim

sinx

xasina

xa

1xa

.解lim

sinx

xasina

xa

1xa

=lim1

sinxsina

sina

1sinacosa

xacosasina

xaxa2cossin=lim1xasina

xa2cosasin

=lim1xasina

sina

cosa(xa)



cosasina

sina

cosa(xa)xa2cosasin=lim1xasina

ctga

=e

ctga

sin

xaxa

~ 22

五 利用数列极限与函数的极限等值关系来求极限

此方法把数列极限化成函数形式的极限,而后回代,从而求出数列极限的一种方法。

举例说明:

abc

.例:若 a,b,c0,求limn3

解先考虑:

1

axbxcx

ln

3

n



xln

x

1

axbxcx

3 

1

axbxcx

而limxln

x3

 

1xxxlnabcln3=lim

x1

x

2axlna2bxlnb2cxlnc=lim

x

12x

1x

1x

1x

1x1x1x

=lim

alnablnbclnc

abc

1x

1x

1x

x

=lnabc

c

 limn3

n

1

axbxcx

=lim

n3

 

n

=lime

n

111axbxcxxln



=e

lnabc

3

=e

lnabc3

=abc

通过上面简单的对求数列极限的一般方法加以归纳,并举例说明,就可以在我们大脑中造成深刻的印象,更好地掌握函数和数列极限的求法。但数列极限的求法并不限于这几种方法,或许还有很多种,希望大家在学习过程中善于归纳总结求数列极限的方法,以便我们共勉。

参考文献:

[1]程其襄.数学分析第三版[M].高等教育出版社,1981(4)[2]谢惠民.数学分析习题课讲义[M].高等教育出版社,2003(7)

[3]周建莹 李正元.高等数学解题指南[M].北京大学出版社,2002.(10)[4]王汝发.高等数学解题方法[M].兰州大学出版社,1994.(3)

第五篇:浅谈函数极限的求法

浅谈函数极限的求法

摘要:函数极限是数学分析的基本内容之一,也是解决其它问题的基础。如何求出已知函数的极限是学习微积分必须掌握的基本技能。本文系统地介绍了利用定义、两个重要极限、无穷小量代换、洛必达法则、夹逼准则等求极限的方法,并结合具体的例子,指出了在解题中常遇见的一些问题。

关键词: 函数极限夹逼准则等价无穷小量洛必达法则泰勒展开式无穷小量

引言

极限研究的是函数的变化趋势,在自变量的某个变化过程中,对应的函数值无限解决某个确定的数,那这个数就是函数的极限了。极限是数学分析中一个非常重要的概念,是贯彻数学分析的一条主线,它将数学分析的各个知识点连在一起,所以,求极限的方法显得尤为重要的,我们知道,函数是数学分析研究的对象,而极限方法则是数学分析中研究函数的重要方法,因此怎样求极限就非常重要。

数学分析中所讨论的极限大体上分为两类:一类是数列的极限,一类是函数的极限。两类极限的本质上是相同的,在形式上数列界限是函数极限的特例。因此,本文只就函数极限进行讨论。函数极限运算是高等数学的一个重要的基本运算,一部分函数的极限可以通过直接或间接的运用“极限四则运算法则”来求解,而另一部分函数极限需要通过特殊方法解决。求函数极限的方法较多,但是每种方法都有其局限性,都不是万能的。对某个具体的求极限的问题,我们应该追求最简便的方法。在求极限的过程中,必然以相关的概念、定理以及公式为依据,并借助一些重要的方法和技巧。本文给出了十七种求极限的方法,每种方法都是以定理或简述开头,然后以例题来全面展示具体的求法。下面我们通过对一元函数和二元函数极限的求法来进行分类讨论

一元函数极限的求法

1.1利用函数定义求极限

利用函数极限的定义验证函数的极限。设函数f在点x0的某空心邻域,使得当U0(x0;)内有定义,A为定数。若对任给的0,存在正数()

0xx0时,有f(x)A成立,则称函数f当x趋于x0时以A为极限,记作limf(x)A或f(x)A(xx0)。xx0

x24例1设f(x),证明limf(x)4.x2x

2x244x24x2,证明: 由于当x2时,f(x)4x2

故对给定的0,只要取,则当0x2时,有f(x)4.这就证明了limf(x)4.x2

(1)定义中的正数,相当于数列极限N定义中的N,它依赖于,但也不是由所惟一确定。一般来说,愈小,也相应地要小一些,而且把取得更小一些也无妨,如在题1中可取

2或

3等等。

(2)定义中只要求函数f在点x0的某个空心领域内有定义,而一般不考虑f在点x0处的函数值是否有定义,或者取什么值。这是因为,对于函数极限我们所研究的是当x趋于x0过程中函数值的变化趋势。如在题1中函数f在点x2是没有定义的,但当x2时,f的函数值趋于一个定数。

1.2 利用单侧极限求函数极限

这种方法适用于求分段函数在分段点处的极限。首先必须考虑分段点处的左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。如符号函数sgnx,由于它在x0处的左、右极限不相等,所以limsgnx不存在。x0

f(x)limf(x)A.定理1 limf(x)Alimxx0xx0xx0

2xx0例2 : f(x)0 x0,求f(x)在x0处的极限.1x2x0

f(x)lim2x1,解: limx0x0

f(x)lim1x1,limx0x0

2f(x)limf(x)1, limx0x0

 limf(x)1.x0

1.3 利用函数极限的四则运算法则求极限

定理2 若极限limf(x)和limg(x)都存在,则函数f(x)g(x),f(x)g(x),xx0xx0

当xx0时也存在极限,且有

①limxx0

xx0f(x)g(x)limf(x)limg(x); xx0xx0xx0xx0②limf(x)g(x)=limf(x)limg(x);

limf(x)f(x)f(x)xx0③又若limg(x)0,则在xx0时也存在极限,且有lim.xx0xx0g(x)g(x)limg(x)

xx0

利用函数极限的四则运算法则求极限,条件是每项或每个因子极限都存在,一般所给的变量都不满足这个条件,如0,等情况,都不能直接用四则运算法0

则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握因式分解、有理化运算等恒等变形。

(xtanx1).例3:求limx4

解: 由xtanxxsinx2及limsinxsinlimcosx,有 xxcosx42lim(xtanx1)=limxx4limsinxx4xlimcosxxlim1x41.1.6 利用函数的连续性求函数极限

参考文献:

[1] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2001.[2] 陈传璋,朱学炎等.数学分析(第二版)[M].北京:高等教育出版社,1998.[3] 张再云,陈湘栋等,极限计算的方法与技巧[J].湖南理工学院学报(自然科学版),2009,22(2):16-19.[4]欧阳光中.数学分析[M].上海:复旦大学出版社,2002.[5]钱吉林.数学分析解题精粹[M].武汉:崇文书局出版社,2001

下载数学分析中极限的求法总结word格式文档
下载数学分析中极限的求法总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数极限的若干求法 20121109

    高等数学中极限的分析与研究 【摘 要】极限是高等数学中一个很重要的基础知识点,是微积分的前提,因此函数极限的求解是非常重要的。本文针对高等数学中极限的求解方法进行了一......

    第一讲 数列极限(数学分析)(合集)

    第一讲 数列极限一、上、下确界1、定义:1)设SR,若MR:xS,xM,则称M是数集S的一个上界,这时称S上有界;若LR:xS,xL,则称L是数集S的一个下界,这时称S下有界;当S既有上界又有下界时就称S为......

    函数极限的求法(正文)(五篇材料)

    目录 0.引言 .......................................................... 1 1.函数极限的定义 ................................................ 1 2. 一元函数极限的求......

    数学中常用极限方法总结

    【1】 忽略高阶无穷小方法。 很多极限看起来很复杂,而且也不好使用洛必达法则,但是如果忽略掉次要部分,则会很容易计算。 比如 再比如斐波那契数列, ,忽略掉比x低的无穷小项后为......

    abltch《数学分析》9数列极限存在的条件

    -+懒惰是很奇怪的东西,它使你以为那是安逸,是休息,是福气;但实际上它所给你的是无聊,是倦怠,是消沉;它剥夺你对前途的希望,割断你和别人之间的友情,使你心胸日渐狭窄,对人生也越来越......

    求极限总结

    首先 对 极限的总结 如下极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2......

    高等数学极限总结

    我的高等数学 学我所学,想我所想 【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学......

    高等数学极限总结[最终定稿]

    【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基......