第一篇:数学分析中极限的求法总结
数学分析中极限的求法总结
1.1 利用极限的定义求极限
用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:limfxA的ε-δ 定义是指:ε>0,δ=δ(x0,ε)>0,0<|x-x0|xx0
<δ|f(x)-A|<ε 为了求δ 可先对x0的邻域半径适当限制,如然后适当放
大|f(x)-A|≤φ(x)(必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:
|x+a|=|(x-x0)+(x0+a)|≤|x-x0|+|x0+a|<|x0+a|+δ
1域|x+a|=|(x-x0)+(x0+a)|≥|x0+a|-|x-x0|>|x0+a|-δ1
从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-x0 |<δ 时,就有|f(x)-A|<ε.xx...xna.例:设limxna则有lim1
2nnn
xn-a于是当证明:因为limxna,对0,N1N1(),当nN1时,n2
xx...xnxx...xnna12a12 nN1nn
0
其中Ax1ax2axN1是一个定数,再由
解得n2AA,n2xx...xn2A ,故取NmaxN1,当nN12+=。n22
1.2 利用极限的四则运算性质求极限
定理[1]:若极限limf(x)和limg(x)都存在,则函数f(x)g(x),f(x)g(x)当xx0xx0
xx0时也存在且
①limf(x)g(x)limf(x)limg(x)xx0xx0xx0
②limf(x)g(x)limf(x)limg(x)xx0xx0xx0
limf(x)f(x)f(x)xx
又若c0,则在xx0时也存在,且有lim.0
xx0g(x)g(x)limg(x)
xx0
利用该种方法求极限方法简单,但要注意条件是每项或每个因子极限存在,0
一般情况所给的变量都不满足这个条件,例如出现, 等情况,都
0
不能直接运用四则运算法则,必须对变量进行变形。变形时经常用到因式分解、有理化的运算以及三角函数的有关公式。
31()例:求lim x11x31x
解:由于当x1时,与的极限都不存在,故不能利用“极限的和等3
1x1x
于和的极限”这一法则,先可进行化简
313(1xx2)(1x)(2x)(2x)
这样得到的新函数当=
1x31x1-x3(1x)(1xx2)(1xx2)
x1时,分子分母都有极限且分母的极限不为零,可用商的极限法则,即
31(2x)lim()=lim=1 x11x31xx1(1xx2)
1.3 利用函数的连续性求极限
定理[2]:一切连续函数在其定义区间内的点处都连续,即如果x0是函数f(x)的定义区间内的一点,则有limf(x)f(x0)。
xx0
一切初等函数在其定义域内都是连续的,如果f(x)是初等函数,x0是其定义域内一点,则求极限limf(x)时,可把x0代入f(x)中计算出函数值,即
xx0
xx0
limf(x)=f(x0)。
对于连续函数的复合函数有这样的定理:若u(x)在x0连续且u0(x0),yf(u)在u0处连续,则复合函数yf[(x)]在x0处也连续,从而
xxo
limfxfxo或limfxflimx。
xxo
xxo
lnsinx 例:lim
x
解:复合函数x=
在处是连续的,即有limlnsinx=lnsinln10
22x
1.4 利用无穷小的性质求极限
我们知道在某一过程中无穷大量的倒数是无穷小量,有界变量乘无穷小是无穷小,对一些特殊的函数而言用其他方法很难求得,只能用这种方法来求。
4x-7
例:求lim2
x1x3x2
解:当时x1,分母的极限为零,而分子的极限不为零,可先求处所给函数倒
4x-7x23x2
=。=0,故lim2数的极限lim
x1x1x3x24x-7
1.5 利用单调有界原理求极限
这种方法是利用定理:单调有界数列必有极限,先判断极限存在,进而求极限。
例:求
n解:令xn
xn1
n,即xn1xn,所
以数列x
n单调递增,由单调有界定理知,A,limxn1,即
A
n
n,所以
n1。2
1.6 利用夹逼准则求极限[3]
已知{xn},{yn},{zn}为三个数列,且满足:(1)ynxnzn,(n1,2,3,);(2)limyna,limzna。
则极限limxn一定存在,且极限值也是a,即limxna。利用夹逼准则求极
n
n
n
n
限关键在于从xn的表达式中,通常通过放大或缩小的方法找出两个同极限值的数列使得ynxnzn。
例:xn
...xn的极限
解:因为xn单调递减,所以存在最大项和最小项
xn
...
xn
...
xnn
又因为n,则limxn1。
x
第二篇:浅析极限的若干求法
科技信息 ○高校讲台○ SCIENCE & TECHNOLOGY INFORMATION
2007 年第 23 期
浅析极限的若干求法
孟金涛
(郑州航空工业管理学院数理系河南 郑州 450015)
摘要: 极限理论是高等数学的基础, 本文给出了极限的若干求法, 并用具体实例加以说明。关键词: 极限;表达式;等价无穷小
极限理论是高等数学的基础, 极限问题是高等数学中困难问题之
a +a +⋯+a
xx
x n
一。中心问题有两个: 一是证明极限的存在性, 二是求极限的值。两个 问题密切相关: 若求出了极限的值, 自然极限的存在性也就证明了。反 之, 证明了存在性, 常常也就为求极限铺平了道路。
利用定义证明极限的存在, 有一先决条件, 即事先要知道极限的 猜测值。通常情况下我们都不知道表达式的极限值, 那么如何根据表
→0
a1
+lim
x→0
+⋯+lim x a21 x→0 x→
1解】【(1)将根式有理化, 于是有原式为
x
解】令 t=-x,则 x→∞时, t→∞。于是lim(1-)=lim(1+)= 【
x→∞ t→∞ x t e
x
-t
=1 lim x→0x
(enπ)=sin2 【π, 由于初等函数在有定义的地方都连续,=sin
π
=sin项趋向于零求极限。1+
(1)利用收敛级数的通项趋向于零求极限。(2)利用收敛级数的余 2 π2lim =1。
原极限=sinn→∞ 2 +
1n
12×13×⋯×(n+10)例 9】求下列极限lim 【x, 其中(1)xn= 11×
十一、利用导数定义求极限n→∞ n
2×5×8⋯×(3n-1)
f(x-3h)-f(x0)例 11】设 f(x)在 x0 处可导, 求lim 0 【(2)xn=⋯+ h→0 2 2
2n)n+1 *(2n)
原极限=lim= 0 =arctan1= π 20n→∞ n i=11+x 4 i)
九、利用收敛级数的性质求极限,-
nπ
n+n +n
*)-
*
xn+1解】【(+当 x→∞时), 所以正项级数 1)由于 +x
n 3n+2 3 n =
1收敛, 从而可得通项 xn→0(当 n→∞时)。
∞
∞
∞
解】由导数定义有【
f(x03h)-f(x0)
h→0
lim
h→0
=lim
h
·(1
=0
Mathematics of Computation,1995,64:1147-1170.[ 2] A.R.Conn and Ph.L.Toint.An algorithm using quadratic interpolation for unconstrained derivative free optimization[ A].In G.Di Pillo and F.Gianessi, editors,Nonlinear Optimization and Applications [ M] ,New York, Plenum Publishing, 1996,27-47.[ 3] A.R.Conn,K.ScheinbergandPh.L.Toint.Ontheconvergenceof derivative-free methods for unconstrained optimization[ A].In A.Iserles andM.Buhmann,editors,ApproximationTheoryandOptimization: Tributes to M.J.D.Powell [ C] , Cambridge,UK,Cambridge University Press, 1997,83-103.[ 4] J.J.More and D.C.Sorensen.Computing a trust region step [ J].SIAM J.Sci.Stat.Comput,1983,4(3):553-572.Kef
≤Kk
2Kef
max$△k,△ kKgk
△k
(上接第 480 页)实可行的财务风险防范措施。
从单个企业来讲, 收益不足是导致财务风险的主要因素, 经营收 入扣除经营成本费用税金等经营费用后是经营收益, 如果从经营收益 开始就已经亏损, 说明企业已近破产倒闭, 即使总收益为盈利, 可能是 由于非主营业务或营业外收入所形成利润增加, 如出售手中持有有价 证券、固定资产等;如果经营收益为盈利, 而总收益为亏损, 问题不太 严重的话,说明已经出现危机信号, 但是可以正常经营的, 这是因为企 业的资本结构不合理, 举债规模大,利息负担重所致。企业必须针对财
务指标的评价采取有效措施加以调整。
综上所述,利用财务指标的评价, 找出企业的薄弱环节, 制定出企 业的筹资活动、投资活动、资金回收、收益分配策略及措施, 防范规避 财务风险,才能使企业长久稳定健康发展。
[ 1] 温素彬, 薛恒新.基于科学发展观的企业三重绩效评价模型[J].会计
研究.[ 2] 王化成, 刘俊勇, 孙薇.企业业绩评价[M].北京: 中国人民大学出版
参考文社.献
488
第三篇:高数极限求法总结
首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面
首先 对 极限的总结 如下
极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致 极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记
(x趋近无穷的时候还原成无穷小)
2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)
首先他的使用有严格的使用前提!!!
必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)
必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)
必须是 0比0 无穷大比无穷大!!!!!
当然还要注意分母不能为0 落笔他 法则分为3中情况 0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 3 0的0次方 1的无穷次方 无穷的0次方
对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)
3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)
E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则 最大项除分子分母!!!!!!看上去复杂处理很简单!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!
x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。
15单调有界的性质
对付递推数列时候使用 证明单调性!!!
16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)
(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)
(从网上发现,谢谢总结者)
第四篇:浅谈数列极限的求法
浅谈数列极限的求法
龙门中小李海东
摘要:本文主要介绍了数列极限的几种求法,并通过一个例题说明利用函数极限的求法,帮助寻找数列极限的方法,帮助学生理解和掌握求极限的方法。
关键词:数列极限方(求)法说明
引言:在初等代数,高等代数学习过程中发现或多或少都涉及到数列极限的有关内容,在数学分析中数列极限是极其重要的章节,数列极限是学习函数极限的基础和铺垫,数列极限的求法和函数极限求法在某种程度上是彼此相似的,所以可以对照学习,也可以用一种求极限的方法,求出另外一种极限,给解答习题带来一定的灵活性。方法也是比较灵活的。下面就数列极限的求法略作浅谈,且举例说明。
一 利用单调有界准则求极限
预备知识:若数列an收敛,则an为有界数列,即存在正数M,使得对一切正整数n,有 anM.此方法的解题程序为:
1、直接对通项进行分析或用数学归纳验证数列an单调有界;
2、设an的极限存在,记为limanA代入给定的表达式中,则该式变为A的代数方n
程,解之即得该数列的极限。
举例说明:
例:若序列an的项满足a1a(a0)且an11aan,(n1,2,),试证2an
an有极限并求此极限。
解由a1a
21a1a12a2a1aa1aa22aa2a111
用数学归纳法证明aka需注意
22a2aka1a1akaka.ak2ak2akak
又anan12a1aana0 n2an2an
an为单调减函数且有下界。
令其极限为A 由 an1
1a
an有: 2an
1a
an2an
liman1
n
即A
1a
A 2A
AaA
a(A0)
n
从而liman
a.二 利用数列极限的定义求数列的极限
大家知道,数列极限的定义是这样的:设an为数列,a为定数,若对任给的正数,总存在正整数N,使得当nN时,有ana,则称数列收敛于a,定数a称为数列
anan的极限,记作:limn
a,当数列不单调时,我们就用此定义来求极限,其步骤:
1、先根据数列极限的唯一性求出极限;
2、再去证明极限的存在性。举例说明:
例:设x12, xn12解1.令limxnt
n
(n1)求::limxn.nxn
则limxn1lim2
n
n
xn
即t2t12xn2
t2 t12(t12舍去)
1t
2.证明其极限的存在性对0xnt(2)(2)xn1t
xn1txn2t1xn1t ttxn1442
24n1
(当n足够大)
1xn1
x144n1
由极限的下定义可得:limxnt0
n
limxnt1
n
2.三 利用数列夹逼准则求数列极限
回顾一下:设收敛数列an数列{cn}满足:存在正数N0,当nN0,bn都以a为极限,时,有:ancnbn.则数列{cn}收敛,且limcna.n
此方法一般通过放大或缩小分母来找出两边数列的通项,从而达到求极限的目的。
举例说明:
11
例:求 lim12.n
nn
111n1
解由11212
nnnn
n1n11
1112 (n1)(n1)n1n1
n
n
n
n
nnn
1
显然 lim1e
n
n
nn1
111lim11并且 lim1e nn
n1n1n1
n
11
lim12e.n
nn
四 利用重要公式求极限或转化为函数的极限
此方法必须在牢记重要极限的形式和其值的基础上,对所求式子作适当变形,从而达到求其极限的目的,这种方法灵活,有相当的技巧性。
举例说明:
n
n1
n11
例:求 limsin.n
nnn
n1
n11
解limsin
n
nnn
=lim
n1
nn
n1
sin1
nsin1n1n
=lim1
n
1n
n1
=lim1=e11=e
n
111nn1
n
n
sin
例:求极限lim
sinx
xasina
xa
1xa
.解lim
sinx
xasina
xa
1xa
=lim1
sinxsina
sina
1sinacosa
xacosasina
xaxa2cossin=lim1xasina
xa2cosasin
=lim1xasina
sina
cosa(xa)
cosasina
sina
cosa(xa)xa2cosasin=lim1xasina
ctga
=e
ctga
sin
xaxa
~ 22
五 利用数列极限与函数的极限等值关系来求极限
此方法把数列极限化成函数形式的极限,而后回代,从而求出数列极限的一种方法。
举例说明:
abc
.例:若 a,b,c0,求limn3
解先考虑:
1
axbxcx
ln
3
n
xln
x
1
axbxcx
3
1
axbxcx
而limxln
x3
1xxxlnabcln3=lim
x1
x
2axlna2bxlnb2cxlnc=lim
x
12x
1x
1x
1x
1x1x1x
=lim
alnablnbclnc
abc
1x
1x
1x
x
=lnabc
c
limn3
n
1
axbxcx
=lim
n3
n
=lime
n
111axbxcxxln
=e
lnabc
3
=e
lnabc3
=abc
通过上面简单的对求数列极限的一般方法加以归纳,并举例说明,就可以在我们大脑中造成深刻的印象,更好地掌握函数和数列极限的求法。但数列极限的求法并不限于这几种方法,或许还有很多种,希望大家在学习过程中善于归纳总结求数列极限的方法,以便我们共勉。
参考文献:
[1]程其襄.数学分析第三版[M].高等教育出版社,1981(4)[2]谢惠民.数学分析习题课讲义[M].高等教育出版社,2003(7)
[3]周建莹 李正元.高等数学解题指南[M].北京大学出版社,2002.(10)[4]王汝发.高等数学解题方法[M].兰州大学出版社,1994.(3)
第五篇:浅谈函数极限的求法
浅谈函数极限的求法
摘要:函数极限是数学分析的基本内容之一,也是解决其它问题的基础。如何求出已知函数的极限是学习微积分必须掌握的基本技能。本文系统地介绍了利用定义、两个重要极限、无穷小量代换、洛必达法则、夹逼准则等求极限的方法,并结合具体的例子,指出了在解题中常遇见的一些问题。
关键词: 函数极限夹逼准则等价无穷小量洛必达法则泰勒展开式无穷小量
引言
极限研究的是函数的变化趋势,在自变量的某个变化过程中,对应的函数值无限解决某个确定的数,那这个数就是函数的极限了。极限是数学分析中一个非常重要的概念,是贯彻数学分析的一条主线,它将数学分析的各个知识点连在一起,所以,求极限的方法显得尤为重要的,我们知道,函数是数学分析研究的对象,而极限方法则是数学分析中研究函数的重要方法,因此怎样求极限就非常重要。
数学分析中所讨论的极限大体上分为两类:一类是数列的极限,一类是函数的极限。两类极限的本质上是相同的,在形式上数列界限是函数极限的特例。因此,本文只就函数极限进行讨论。函数极限运算是高等数学的一个重要的基本运算,一部分函数的极限可以通过直接或间接的运用“极限四则运算法则”来求解,而另一部分函数极限需要通过特殊方法解决。求函数极限的方法较多,但是每种方法都有其局限性,都不是万能的。对某个具体的求极限的问题,我们应该追求最简便的方法。在求极限的过程中,必然以相关的概念、定理以及公式为依据,并借助一些重要的方法和技巧。本文给出了十七种求极限的方法,每种方法都是以定理或简述开头,然后以例题来全面展示具体的求法。下面我们通过对一元函数和二元函数极限的求法来进行分类讨论
一元函数极限的求法
1.1利用函数定义求极限
利用函数极限的定义验证函数的极限。设函数f在点x0的某空心邻域,使得当U0(x0;)内有定义,A为定数。若对任给的0,存在正数()
0xx0时,有f(x)A成立,则称函数f当x趋于x0时以A为极限,记作limf(x)A或f(x)A(xx0)。xx0
x24例1设f(x),证明limf(x)4.x2x
2x244x24x2,证明: 由于当x2时,f(x)4x2
故对给定的0,只要取,则当0x2时,有f(x)4.这就证明了limf(x)4.x2
(1)定义中的正数,相当于数列极限N定义中的N,它依赖于,但也不是由所惟一确定。一般来说,愈小,也相应地要小一些,而且把取得更小一些也无妨,如在题1中可取
2或
3等等。
(2)定义中只要求函数f在点x0的某个空心领域内有定义,而一般不考虑f在点x0处的函数值是否有定义,或者取什么值。这是因为,对于函数极限我们所研究的是当x趋于x0过程中函数值的变化趋势。如在题1中函数f在点x2是没有定义的,但当x2时,f的函数值趋于一个定数。
1.2 利用单侧极限求函数极限
这种方法适用于求分段函数在分段点处的极限。首先必须考虑分段点处的左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。如符号函数sgnx,由于它在x0处的左、右极限不相等,所以limsgnx不存在。x0
f(x)limf(x)A.定理1 limf(x)Alimxx0xx0xx0
2xx0例2 : f(x)0 x0,求f(x)在x0处的极限.1x2x0
f(x)lim2x1,解: limx0x0
f(x)lim1x1,limx0x0
2f(x)limf(x)1, limx0x0
limf(x)1.x0
1.3 利用函数极限的四则运算法则求极限
定理2 若极限limf(x)和limg(x)都存在,则函数f(x)g(x),f(x)g(x),xx0xx0
当xx0时也存在极限,且有
①limxx0
xx0f(x)g(x)limf(x)limg(x); xx0xx0xx0xx0②limf(x)g(x)=limf(x)limg(x);
limf(x)f(x)f(x)xx0③又若limg(x)0,则在xx0时也存在极限,且有lim.xx0xx0g(x)g(x)limg(x)
xx0
利用函数极限的四则运算法则求极限,条件是每项或每个因子极限都存在,一般所给的变量都不满足这个条件,如0,等情况,都不能直接用四则运算法0
则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握因式分解、有理化运算等恒等变形。
(xtanx1).例3:求limx4
解: 由xtanxxsinx2及limsinxsinlimcosx,有 xxcosx42lim(xtanx1)=limxx4limsinxx4xlimcosxxlim1x41.1.6 利用函数的连续性求函数极限
参考文献:
[1] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2001.[2] 陈传璋,朱学炎等.数学分析(第二版)[M].北京:高等教育出版社,1998.[3] 张再云,陈湘栋等,极限计算的方法与技巧[J].湖南理工学院学报(自然科学版),2009,22(2):16-19.[4]欧阳光中.数学分析[M].上海:复旦大学出版社,2002.[5]钱吉林.数学分析解题精粹[M].武汉:崇文书局出版社,2001