第一篇:极限总结
概念整理
一、证明极限
二、求极限
三、定理概念,证明,用途。
四、等价利用,证明
一:无穷小:对于任意数,必存在使≤该任意数成立。改变依他(反3)形式。二:利用等价,先想清楚化简的目的,看清趋向。
三:
1、收敛数列的唯
一、有界性,与子数列的关系(同号性)。
2、唯一,函数极限的局部有界性(|…|≤M),局部保号性。
3、limf(x)=A←→f(x)=A+α,其中limα=04、无穷大:对任意数,必存在使≥该任意数,垂直渐近线。
5、无穷小±*无穷小=无穷小,无穷小*有界函数(或常数)=无穷小。
6、某函数有极限,则一定领域内,_1___有界(本来是由无穷大到某个数,倒过来之后是某个数到无穷小)f(x)
7、无穷小/以非零常数为极限的函数=无穷小(由6,5得)。
8、limf(x),则lim【Cf(x)】=Climf(x)、so does “n次方”。
9、limsinx/x=1P22.P23有好多等价(有证明)。
10、lim(1+1/x)^x=eP2411、趋向更快,则为高阶。相除为常数,同阶。与K次相除为常数,K阶无穷小。相除为1,等价无穷小。
12、连续的定义:该点存在极限且等于该点函数值;在|x-xo|≤δ中存在|f(x)-f(xo)|≤ε;Δx→0,Δy→0.13、可去间断点,跳跃间断点,无穷间断点,震荡间断点(f(x)=1/sinx)。
14、连续函数的四则运算,与常数一致。
15、闭区间连续函数:有界,介值(A>C>B,A、B为端点函数值),零点定理。
习题整理
第二篇:求极限总结
首先 对 极限的总结 如下
极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记
(x趋近无穷的时候还原成无穷小)
2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)
首先他的使用有严格的使用前提!!!
必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件
(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)
必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)
必须是 0比0 无穷大比无穷大!!!!!
当然还要注意分母不能为0
落笔他 法则分为3中情况0比0 无穷比无穷 时候 直接用0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方
对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)E的x展开 sina 展开 cos 展开 ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则 最大项除分子分母!!!!!!
看上去复杂处理很简单!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x
比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式
(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!
x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!
当x趋近无穷的时候 他们的比值的极限一眼就能看出来了换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。
15单调有界的性质
对付递推数列时候使用 证明单调性!!!
16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)
(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)
(0)
回复
1楼2014-03-19 20:22举报 |来自Android客户端
张806788364
举人5
函数的性质也体现在积分 微分中
例如他的奇偶性质 他的周期性。还有复合函数的性质
1奇偶性,奇函数关于原点对称 偶函数关于轴对称 偶函数左右2边的图形一样(奇函数相加为0)
2周期性也可用在导数中 在定积分中也有应用 定积分中的函数是周期函数 积分的周期和他的一致复合函数之间是 自变量与应变量互换 的 关系
4还有个单调性。(再求0点的时候可能用到这个性质!)
(可以导的函数的单调性和他的导数正负相关)
:o 再就是总结一下间断点的问题(应为一般函数都是连续的 所以 间断点 是对于间断函数而言的)
间断点分为第一类 和第二类剪断点第一类是左右极限都存在的(左右极限存在但是不等 跳跃的的间断点 或者 左右极限存在相等但是不等于函数在这点的值 可取的间断点
地二类 间断点是 震荡间断点 或者是 无穷极端点
(这也说明极限即是 不存在也有可能是有界的)
:o 下面总结一下
求极限的一般题型求分段函数的极限
当函数含有绝对值符号时,就很有可能是有分情况讨论的了!!!!
当X趋近无穷时候 存在e的x次方的时候,就要分情况讨论 应为 E的x次方的函数正负无穷的结果是不一样的!!!!极限中含有变上下限的积分 如何解决类????
说白了 就是说 函数中现在含有积分符号,这么个符号在极限中太麻烦了 你要想办法把它搞掉!!!!!!!!
解决办法 :
1求导,边上下限积分求导,当然就能得到结果了 这不是很容易么?
但是!!!有2个问题要注意!!
问题1 积分函数能否求导? 题目没说积分可以导的话,直接求导的话是错误的!!问题2 被积分函数中 既含有T又含有x的情况下如何解决??????
解决1的方法: 就是方法2 微分中值定理!!!!!
微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!!!
解决2的方法 : 当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!!
第三篇:高等数学极限总结
我的高等数学 学我所学,想我所想
【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。【关键词】高等数学 极限 技巧
《高等数学》极限运算技巧
《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。
一,极限的概念
从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!
从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。
二,极限的运算技巧
我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!
我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。
我的高等数学 学我所学,想我所想
1,连续函数的极限
这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。
2,不定型
我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。
第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:
需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。此外等价无穷小代换的使用,可以变通一些其他形式,比如:
等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。
当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。
在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。
我的高等数学 学我所学,想我所想
第二,在含有∞的极限式中,一般可分为下面几种情况:(1),“∞/∞ ”形式
如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:
,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。
如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。(2),“∞-∞ ”形式
“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:
这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。(3)“ ”形式
我的高等数学 学我所学,想我所想
这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。
第三,“ ”
这种形式的解决思路主要有两种。
第一种是极限公式,这种形式也是比较直观的。比如:道题的基本接替思路是,检验形式是“式,最后直接套用公式。
这
”,然后选用公式,再凑出公式的形第二种是取对数消指数。简单来说,“ ”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:
可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。三,极限运算思维的培养
极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。
第四篇:高等数学极限总结
【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。
【关键词】高等数学 极限 技巧
《高等数学》极限运算技巧
《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。
一,极限的概念
从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!
从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。
二,极限的运算技巧
我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!
我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。
1,连续函数的极限
这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。
2,不定型
我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。
第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:
需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。
此外等价无穷小代换的使用,可以变通一些其他形式,比如:
等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。
当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。
在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特
别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。
第二,在含有∞的极限式中,一般可分为下面几种情况:
(1),“∞/∞ ”形式
如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:
,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。
如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。
(2),“∞-∞ ”形式
“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:
这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。
(3)“ ”形式
这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。
第三,“ ”
这种形式的解决思路主要有两种。
第一种是极限公式,这种形式也是比较直观的。比如:
这道题的基本接替思路是,检验形式是“式。
”,然后选用公式,再凑出公式的形式,最后直接套用公第二种是取对数消指数。简单来说,“ ”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:
可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。
三,极限运算思维的培养
极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。
第五篇:极限定义的总结
极限定义的总结
极限主要包括两个方面,即自变量的变化趋势和函数的变化趋势。我们就这两个变化趋势来总结极限的定义:
自变量变化趋势limf(x)函数的变化趋势
自变量的变化趋势主要有六种:
x,x,x,xx0,xx0,xx0
函数的变化趋势主要有四种:
f(x)A,f(x),f(x),f(x) 自变量的描述格式如下:
X0,当|x|X时;(x)
X0,当xX时;(x)
X0,当x-X时;(x)
0,当0|x-x0|时;(xx0)
0,0, 当0x-x0时;(xx0)当0|x-x0|时;(xx0)
函数的描述格式如下:
0, ,
0, ,
0, , 恒时:|f(x)A|(f(x)A)恒时:|f(x)|M(f(x))恒时:f(x)M(f(x))
恒时:f(x)M(f(x))0, ,
那么函数极限的定义可以是这C61C4124种中的任意一种。当然还有一种最特殊的函数极限,即数列的极限。它是一种自
变量的变化不连续的特殊情形。