第一篇:2018考研数学:数列极限方法总结归纳
为学生引路,为学员服务
2018考研数学:数列极限方法总结归纳
极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。下面凯程考研就分享一下数列极限方法,大家注意学习。
极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下:
极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。
四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。
为学生引路,为学员服务
页 共 2 页
为学生引路,为学员服务
页 共 3 页
第二篇:数列、极限、数学归纳法·数学归纳法
数列、极限、数学归纳法·数学归纳法·教案
教学目标
1.了解归纳法的意义,培养学生观察、归纳、发现的能力.
2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤. 3.抽象思维和概括能力进一步得到提高. 教学重点与难点
重点:归纳法意义的认识和数学归纳法产生过程的分析. 难点:数学归纳法中递推思想的理解. 教学过程设计
(一)引入
师:从今天开始,我们来学习数学归纳法.什么是数学归纳法呢?应该从认识什么是归纳法开始.
(板书课题:数学归纳法)
(二)什么是归纳法(板书)
师:请看下面几个问题,并由此思考什么是归纳法,归纳法有什么特点.
问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?(可准备一袋白球、问题用小黑板或投影幻灯片事先准备好)生:把它倒出来看一看就可以了.
师:方法是正确的,但操作上缺乏顺序性.顺序操作怎么做? 生:一个一个拿,拿一个看一个. 师:对.问题的结果是什么呢?(演示操作过程)
第一个白球,第二个白球,第三个白球,„„,第十二个白球,由此得到:这一袋球都是白球.
特点吗?
生:归纳法是由一些特殊事例推出一般结论的推理方法. 特点是由特殊→一般(板书).
师:很好!其实在中学数学中,归纳法我们早就接触到了.例如,给出数列的前四项,求它的一个通项公式用的是归纳法,确定等差数列、等比数列通项公式用的也是归纳法,今后的学习还会看到归纳法的运用.
在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.
还应该指出,问题1和问题2运用的归纳法还是有区别的.问题1中,一共12个球,全看了,由此而得到了结论.这种把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.对于问题2,由于自然数有无数个,用完全归纳法去推出结论就不可能,它是由前4项体现的规律,进行推测,得出结论的,这种归纳法称为不完全归纳法.
(三)归纳法的认识(板书)
归纳法分完全归纳法和不完全归纳法(板书). 师:用不完全归纳法既然要推测,推测是要有点勇气的,请大家鼓起勇气研究问题3.
资料1(事先准备好,由学生阅读)
费马(Fermat)是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献. 但是,费马曾认为,当n∈N时,22n+1一定都是质数,这是他对n=0,1,2,3,4作了验证后得到的.
18世纪伟大的瑞士科学家欧拉(Euler)却证明了225+1=4 294 967 297=6 700 417×641,从而否定了费马的推测.
师:有的同学说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!再请看数学史上的另一个资料(仍由学生阅读):
师:算了39个数不算少了吧,但还不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来. 师:归纳法为什么会出错呢? 生:完全归纳法不会出错.
师:对!但运用不完全归纳法是不可避免的,它为什么会出错呢? 生:由于用不完全归纳法时,一般结论的得出带有猜测的成份. 师:完全同意.那么怎么办呢? 生:应该予以证明.
师:大家同意吧?对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明.
(四)归纳与证明(板书)
师:怎么证明呢?请结合以上问题1思考.
生:问题1共12个球,都看了,它的正确性不用证明了.
师:也可以换个角度看,12个球,一一验看了,这一一验看就可以看作证明.数学上称这种证法为穷举法.它体现了分类讨论的思想.
师:如果这里不是12个球,而是无数个球,我们用不完全归纳法得到,这袋球全是白球,那么怎么证明呢?
(稍作酝酿,使学生把注意力更集中起来)
师:这类问题的证明确不是一个容易的课题,在数学史上也经历了多年的酝酿.第一个正式研究此课题的是意大利科学家莫罗利科.他运用递推的思想予以证明. 结合问题1来说,他首先确定第一次拿出来的是白球. 然后再构造一个命题予以证明.命题的条件是:“设某一次拿出来的是白球”,结论是“下一次拿出来的也是白球”.
这个命题不是孤立地研究“某一次”,“下一次”取的到底是不是白球,而是研究若某一次是白球这个条件能保证下一次也是白球的逻辑必然性. 大家看,是否证明了上述两条,就使问题得到解决了呢?
生:是.第一次拿出的是白球已确认,反复运用上述构造的命题,可得第二次、第三次、第四次、„„拿出的都是白球.
师:对.它使一个原来无法作出一一验证的命题,用一个推一个的递推思想得到了证明. 生活上,体现这种递推思想的例子也是不少的,你能举出例子来吗? 生:一排排放很近的自行车,只要碰倒一辆,就会倒下一排. 生:再例如多米诺骨牌游戏.(有条件可放一段此种游戏的录相)
师:多米诺骨牌游戏要取得成功,必须靠两条:
(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒;(2)第一张牌被推倒.
用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的证明方法就是数学归纳法.
(五)数学归纳法(板书)
师:用数学归纳法证明以上问题2推测而得的命题,应该证明什么呢? 生:先证n=1时,公式成立(第一步);
再证明:若对某个自然数(n=k)公式成立,则对下一个自然数(n=k+1)公式也成立(第二步). 师:这两步的证明自己会进行吗?请先证明第一步.
师:于是由上述两步,命题得到了证明.这就是用数学归纳法进行证明的基本要求. 师:请小结一下用数学归纳法作证明应有的基本步骤. 生:共两步(学生说,教师板书):(1)n=1时,命题成立;
(2)设n=k时命题成立,则当n=k+1时,命题也成立.
师:其实第一步一般来说,是证明开头者命题成立.例如,对于问题3推测得的命
(若有时间还可讨论此不等关系证明的第二步,若无时间可布置学生课下思考)
(六)小结
师:把本节课内容归纳一下:
(1)本节的中心内容是归纳法和数学归纳法.
(2)归纳法是一种由特殊到一般的推理方法.分完全归纳法和不完全归纳法二种.(3)由于不完全归纳法中推测所得结论可能不正确,因而必须作出证明,证明可用数学归纳法进行.(4)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的操作步骤必须是二步.
数学归纳法在数学中有广泛的应用,将从下节课开始学习.
(七)课外作业
(1)阅读课本P112~P115的内容.(2)书面作业P115练习:1,3. 课堂教学设计说明
1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.
数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束. 把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试. 2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.
3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.
第三篇:数列、极限、数学归纳法专题
数
列
专
题
复
习
选题人:董越
【考点梳理】
一、考试内容
1.数列,等差数列及其通项公式,等差数列前n项和公式。2.等比数列及其通项公式,等比数列前n项和公式。3.数列的极限及其四则运算。4.数学归纳法及其应用。
二、考试要求
1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。
4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。
5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。
三、考点简析
1.数列及相关知识关系表
2.作用地位
(1)数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,…,n}上的函数。对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。等比数列可看作自然数n的“指数函数”。因此,学过数列后,一方面对函数概念加深了了解,拓宽了知识范围;另一方面也为今后学习高等数学中的有关级数的知识和解决现实生活中的一些实际问题打下了基础。
(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。
(3)数学归纳法是一种数学论证方法,学习了这部分知识后,又掌握了一种新的数学论证方法,开拓了知识领域,学会了新的技能;同时通过这部分知识的学习又学到一种数学思想,对培养学生逻辑思维的能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综
合、抽象、概括等思维能力,都有很好的效果。
(4)数列、极限、数学归纳法这部分知识,在高考中占有相当的比重。这部分知识是必考的内容,而且几乎每年有一道综合题。
3.等差数列
(1)定义:an+1-an=d(常数d为公差)
(2)通项公式:an=a1+(n-1)d(3)前n项和公式:Sn=
n(a1an)n(n1)=na1+d(4)通项公式推广:an=am+(n-m)d
224.等差数列{an}的一些性质
(1)对于任意正整数n,都有an+1-an=a2-a1(2){an}的通项公式:an=(a2-a1)n+(2a1-a2)(3)对于任意正整数p,q,r,s,如果p+q=r+s,则有ap+aq=ar+as(4)对于任意正整数p,q,r,如果p+r=2q,则有ap+ar=2aq(5)对于任意正整数n>1,有2an=an-1+an+1
(6)对于任意非零实数b,若数列{ban}是等差数列,则数列{an}也是等差数列(7)已知数列{bn}是等差数列,则{an±bn}也是等差数列(8){a2n},{a2n-1},{a3n},{a3n-1},{a3n-2}等都是等差数列
(9)S3m=3(S2m-Sm)
(10)若Sn=Sm(m≠n),则Sm+n=0(11)若Sp=q,Sq=p,则Sp+q=-(p+q)(p≠q)
(12)Sn=an2+bn,反之亦成立 5.等比数列(1)定义:an1-=q(常数q为公比)
(2)通项公式:an=a1qn1 anq1q
1特别注意q=1时,Sn=na1这一特殊情况。
-m(3)前n项和公式
na1Sn=a1(1qn)1q(4)通项公式推广:an=am·qn6.等比数列{an}的一些性质(1)对于任意正整数n,均有
an1a2= ana1(2)对于任意正整数p、q、r、s,只要满足p+q=r+s,则ap·aq=ar·as(3)对于任意正整数p、q、r,如果p+r=2q,则ap·ar=aq2(4)对任意正整数n>1,有an2=an-1·an+1(5)对于任意非零实数b,{ban}也是等比数列
(6)已知{an}、{bn}是等比数列,则{anbn}也是等比数列(7)如果an>0,则{logaan}是等差数列
(8)数列{logaan}成等差数列,则an成等比数列
(9){a2n},{a2n-1},{a3n-1},{a3n-2},{a3n}等都是等比数列 7.数列极限
(1)极限的定义“ε—N”
(2)极限的四则运算
若liman=A,lim bn=B,则
nn 2
lim(an±bn)= liman±limbn=A±B
lim(an·bn)=liman·limbn=A·B nnnnnnlim(an/bn)=liman/limbn=nnnA(B≠0)B(3)两个重要极限
c0|r|1001①limc=c0
②limrn=1
r1 nnn不存在不存在c0|r|1或r1中学数学中数列求极限最终都化成这两类的极限问题。由①我们可以得到多项式除多项式的极限。
a0b pq0a0npa1np1aplim=0 pq
其中p,q∈N,a0≠0,b0≠0。nbnqbnq1a01q不存在 pq(4)无穷递缩等比数列各项和公式
S=limSn=
na1(|q|<1)1q应用:化循环小数为分数。8.递归数列
数列的连续若干项满足的等量关系an+k=f(an+k-1,an+k-2,…,an)称为数列的递归关系。由递归关系及k个初始值可以确定的一个数列叫做递归数列。如由an+1=2an+1,及a1=1,确定的数列{21}即为递归数列。
递归数列的通项的求法一般说来有以下几种:(1)归纳、猜想、数学归纳法证明。(2)迭代法。
(3)代换法。包括代数代换,对数代换,三角代换。
(4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。9.数列求通项与和 nsnsn1n2(1)数列前n项和Sn与通项an的关系式:an=
sn11(2)求通项常用方法
①作新数列法。作等差数列与等比数列。
②累差叠加法。最基本的形式是:an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1 ③归纳、猜想法。(3)数列前n项和 ①重要公式
1+2+…+n=13+23+…+n3=(1+2+…+n)2=
11n(n+1)
12+22+…+n2=n(n+1)(2n+1)261
2n(n+1)2 4 3
②等差数列中,Sm+n=Sm+Sn+mnd ③等比数列中,Sm+n=Sn+qnSm=Sm+qmSn ④裂项求和
将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:
1111=-
n·n!=(n+1)!-n!
=cotα-cot2α
sin2αn(n1)nn1Cn-1r1=Cnr-Cn-1r
-
1n1=-等。n!(n1)!(n1)!⑤错项相消法
对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错项相消法。⑥并项求和
把数列的某些项放在一起先求和,然后再求Sn。
数列求通项及和的方法多种多样,要视具体情形选用合适方法。10.数学归纳法
(1)数学归纳法的基本形式
设P(n)是关于自然数n的命题,若 1°p(n0)成立(奠基);
2°假设P(k)成立(k≥n0),若可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立。
(2)数学归纳法的应用
数学归纳法适用于有关自然数n的命题。具体来讲,数学归纳法常用来证明恒等式,不等式,数的整除性,几可中计数问题,数列的通项与和等。
四、思想方法
数列、极限、数学归纳法中,主要注意如下的基本思想方法:
1.分类讨论思想。如等比数列的求和分公比等于1和不等于1两种情形;已知数列前n项和求通项分n=1和n≥2两种情形;求极限时对两个参数进行大小比较的讨论等。
2.函数思想。将数列视为定义域为自然数或其子集的函数。
3.数形结合思想。如等差数列的通项公式和前n项和公式分别视为直线、二次曲线的方程。
4.转化思想。如将非等差数列、非等比数列转化为等差数列、等比数列。5.基本量思想。如把首项及公差、公比视为等差数列、等比数列的基本量。6.构造思想。如由旧数列构造新数列。
7.特殊化思想。为研究一般问题可先退化到特殊问题的研究。在这部分内容中,处处充满了由具体到抽象,由特殊到一般,由有限到无限的辩证法,这就要求我们在思考问题时要用辩证的观点,由具体认识抽象,由特殊窥见一般,由有限逼近无限。其中,我们常用的“归纳——猜想——证明”法就体现了这一点。
8.一般化思想。为研究一个特殊问题,我们先研究一般的情形。我们采用的数学归纳法,就主要体现一般化思想,先证命题对一般值成立,然后再证对每一个特殊的n值也成立。
第四篇:求数列极限的方法总结
求数列极限
数学科学学院数学与应用数学
11级电子 张玉龙 陈进进指导教师 鲁大勇
摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同 的方面罗列了它的几种求法。
关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多 样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法 还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代 换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的 四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要 重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了
1.定义法 利用数列极限的定义求出数列的极限.设{Xn}是一个数列,a 是实数,如果对 任意给定的 ε 〉0,总存在一个正整数 N,当 n〉N 时,都有 Xn ? a < ε ,我们就称 a 是数列{Xn}的极限.记为 lim Xn = a.n→∞ 例 1: 按定义证明 lim 1 = 0.n → ∞ n!解:1/n!=1/n(n-1)(n-2)…1≤1/n 1 令 1/n< ε ,则让 n> 即可, ε 存在 N=[ 立, 1 ε ],当 n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n< ε 成 1 = 0.n → ∞ n!
2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则.1+ a + a2 + L+ an 例 2: 求 lim ,其中 a < 1, b < 1.n →∞ 1 + b + b 2 + L + b n 解: 分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限 1 ? a n +1 1 ? b n +1 1+ a + a2 +L + an = ,1 + b + b 2 + L + b n = , 1? a 1? b 1 ? a n+1 1 lim 1? b n →∞ 1 ? a 1? a 原式= = , n +1 = 1 1? b 1? a lim n →∞ 1 ? b 1? b 所以 lim
3.利用夹逼性定理求极限若 存 在 正 整 数 N, 当 n>N 时 , 有 Xn ≤ Yn ≤ Zn, 且 lim Xn = lim Zn = a , 则 有 n →∞ n →∞ lim Yn = a.n →∞ 例 3:求{ 解: 1+ n }的极限.n2 对任意正整数 n,显然有 1 1 + n 2n 2 < 2 ≤ 2 = , n n n n 1 2 而 → 0 , → 0 ,由夹逼性定理得 n n 1+ n lim 2 = 0.n →∞ n
4.换元法 通过换元将复杂的极限化为简单.an ?1 例 4.求极限lim n,此时 n →∞ a + 2 有,令 解:若 5.单调有界原理
4.例 5.证明数列 证: 令 我们用归纳法证明 若 ≤2 则 则 有极限,并求其极限。,易知{ }递增,且 ≤2.显然。中两 故由单调有界原理{ }收敛,设 →,则在 边取极限得 即 解之得 =2 或 =-1 明显不合要求,舍去,从而
5.6.6.先用数学归纳法,再求极限.1 ? 3 ? 5 ? L ?(2n ? 1)例 6:求极限 lim n →∞ 2 ? 4 ? 6 ? L ? 2n 1 3 5 2n ? 1 1 解: 0 < ? ? ? L ? < 2 4 6 2n 2n + 1 1 3 5 2n ? 1 S= ? ? ? L ? 2 4 6 2n 2 4 2n 设 S * = ? ?L? 则有 S< S * 3 5 2n + 1 1 S2=S*S
7.7.利用两个重要极限 lim = 1 , lim(1 +)x = e.x →0 x → +∞ x x 2 例 7:求 lim(1 +)x x → +∞ x x x 2 1 解: 原式= lim(1 +)2 ?(1 +)2 = e ? e = e 2 x → +∞ x x
8.8.利用等价无穷小来求极限 将数列化成自己熟悉的等价无穷小的形式然后求极限., lim 例 8:求 lim x→+ 而0 < S < 1 1 1 + x sin x ? 1 ex ?1 2 解:当 x → 0 的时候, x sin x → 0 , 1 + x sin x ? 1 ~ 而此时, e x ? 1 ~ x 2 ,所以 x sin x 1 原式= lim = x →0 2 x 2 2 0 ∞
9.9.用洛必达法则求极限.适用于 和 型 0 ∞ 1 ? cos x 例 9:求 lim x →0 x2 0 解: 是 待定型.0 1 ? cos x sin x 1 = lim lim = 2 x →0 x →0 2 x 2 x
10.10.积分的定义及性质 1p + 2 p + 3 p + L + n p 例 10:求 lim(p > 0)n → +∞ n p +1 1p + 2 p + 3 p + L +n p 1 n i 解: lim(p > 0)= lim ∑()p n → +∞ n → +∞ n n p +1 i =1 n p 设 f(x)= x ,则 f(x)在[0,1]内连续, 1 i i ?1 i ?x i = , 取 ξ i = ∈ [ , ] n n n n i 所以, f(ξ i)=()p n 1 1 所以原式= ∫ x p dx = 0 p +1
11.11.级数收敛的必要条件.2 x sin x.2 设 ∑ u n 等于所求极限的表达式 , 再证∑ u n 是收敛的, 据必要条件知所求表达式的 n =1 n =1 ∞ ∞ 极限为 0.例 11:求 lim n → +∞ n!nn ∞ u 1 1 n!= <1 ,则 lim n +1 = lim n n → +∞ u n → +∞ 1 e n n =1 n(1 +)n n n!所以该级数收敛,所以 lim n =0 n → +∞ n
12.12.对表达式进行展开、合并、约分和因式分解以及分子分母有理化,三角函数 的恒等变形。sin 5 x ? sin 3 x 例 12.求 lim x →0 sin 2 x 解: ? sin 5 x 2 x 5 sin 3 x 2 x 3 ? 5 3 法一:原式= lim ? ? ? ? ? ? = ? =1 x →0 3 x sin 2 x 2 ? 2 2 ? 5 x sin 2 x 2 ? 5 x + 3x 5 x ? 3x 2 cos sin 2 cos 4 x sin x 2 cos 4 x 2 2 法二:原式= lim = lim = lim =1 x →0 x → 0 2sin x cos x x → 0 2 cos x sin 2 x
13.13.奇数列和偶数列的极限相同,则数列的极限就是这个极限。(?1)x 例 13:求 lim x 的值 x→∞ 2 ?1 解:奇数列为 lim x =0 x→∞ 2 1 偶数列为 lim x =0 x→∞ 2(?1)x 所以 lim x =0 x→∞ 2
14.14.利于泰勒展开式求极限。解:设 ∑ u n = 例 14.求 lim(5 x 5 + x 4 ? 5 x 5 ? x 4)1 1 ? 1 1 1 ? 解:原式= lim x ?(1 +)5 ?(1 ?)5 ?(令 t=)x → +∞ x x x ? ? 1 ? 1 ? 1 + t + o(t)? ?1 ? t + o(t)? 1 1 ? 1? 5 ? 5 ?=2 = lim ?(1 + t)5 ?(1 ? t)5 ? = t → +0 t t 5 ? ?
15.15.利于无穷小量的性质和无穷小量和无穷大量之间的关系求极限。利用无穷小量与有界变量的乘积仍为无穷小量,无穷小量与无穷大量互为倒数 的关系,以及有限个无穷小的和仍是无穷小等等。1 例 15:求 lim 2 sin x 的值 x →∞ x 1 是无穷小量,而 lim sin x 是有界变量,所以 x →∞ x 2 x →∞ 1 lim 2 sin x 还是无穷小量,即 x →∞ x 1 lim 2 sin x =0 x →∞ x
16.16.利用数列的几何、算术平均值求极限。数列{ an }有极限,则它的几何平均值和算术平均值的极限与与原极限相同。解:因为 lim 例 16:求 lim n an 的值 n →∞ 解: lim n an = lim n n →∞ n →∞ an a a a a a ? 2 ? 1 ? a0 = lim n n ? 2 ? 1 ? lim n a0 n →∞ an ?1 a1 a0 an ?1 a1 a0 n →∞ 设 bn = an,因为知 lim n an =1 n →∞ an?1 an an ?1 所以,所求原式的极限就等于{ bn }的极限 即原式= lim bn = lim n →∞ n →∞
17.17.绝对值中的极限 若 a n → a(n → ∞),则 a n → a(n → ∞)例 17:求 lim 1 的值 x →∞ x 3 1 1 解: lim 3 = lim 3 =0 x →∞ x x →∞ x
第五篇:2018考研数学:16种极限求解的方法总结
凯程考研辅导班,中国最权威的考研辅导机构
2018考研数学:16种极限求解的方法总
结
学好高数,极限基础必须要打好,极限求解也是必要解决的问题,下面总结了16种可用的方法,大家学习学习,可灵活应用。
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成