求数列极限的方法总结[精选多篇]

时间:2019-05-14 15:44:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《求数列极限的方法总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《求数列极限的方法总结》。

第一篇:求数列极限的方法总结

求数列极限的方法总结

万学教育 海文考研 教学与研究中心 贺财宝

极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大.极限的计算是核心考点,考题所占比重最大.熟练掌握求解极限的方法是得高分的关键.极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数.熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算.以下我们就极限的内容简单总结下.极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法.四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限.与极限计算相关知识点包括:

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验f(x0)存在的定义是极限limx0f(x0+x)-f(x0)存在;

3、渐近线,(垂直、水平或斜渐近线);

x4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在.下面我们重点讲一下数列极限的典型方法.重要题型及点拨 1.求数列极限

求数列极限可以归纳为以下三种形式.★抽象数列求极限

这类题一般以选择题的形式出现, 因此可以通过举反例来排除.此外,也可以按照定义、基本性质及运算法则直接验证.★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限.首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值.b.利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解.★求n项和或n项积数列的极限,主要有以下几种方法: a.利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果. b.利用幂级数求和法

若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值.c.利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限.d.利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解.e.求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算.

第二篇:求数列极限的方法总结

求数列极限

数学科学学院数学与应用数学

11级电子 张玉龙 陈进进指导教师 鲁大勇

摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同 的方面罗列了它的几种求法。

关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多 样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法 还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代 换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的 四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要 重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了

1.定义法 利用数列极限的定义求出数列的极限.设{Xn}是一个数列,a 是实数,如果对 任意给定的 ε 〉0,总存在一个正整数 N,当 n〉N 时,都有 Xn ? a < ε ,我们就称 a 是数列{Xn}的极限.记为 lim Xn = a.n→∞ 例 1: 按定义证明 lim 1 = 0.n → ∞ n!解:1/n!=1/n(n-1)(n-2)…1≤1/n 1 令 1/n< ε ,则让 n> 即可, ε 存在 N=[ 立, 1 ε ],当 n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n< ε 成 1 = 0.n → ∞ n!

2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则.1+ a + a2 + L+ an 例 2: 求 lim ,其中 a < 1, b < 1.n →∞ 1 + b + b 2 + L + b n 解: 分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限 1 ? a n +1 1 ? b n +1 1+ a + a2 +L + an = ,1 + b + b 2 + L + b n = , 1? a 1? b 1 ? a n+1 1 lim 1? b n →∞ 1 ? a 1? a 原式= = , n +1 = 1 1? b 1? a lim n →∞ 1 ? b 1? b 所以 lim

3.利用夹逼性定理求极限若 存 在 正 整 数 N, 当 n>N 时 , 有 Xn ≤ Yn ≤ Zn, 且 lim Xn = lim Zn = a , 则 有 n →∞ n →∞ lim Yn = a.n →∞ 例 3:求{ 解: 1+ n }的极限.n2 对任意正整数 n,显然有 1 1 + n 2n 2 < 2 ≤ 2 = , n n n n 1 2 而 → 0 , → 0 ,由夹逼性定理得 n n 1+ n lim 2 = 0.n →∞ n

4.换元法 通过换元将复杂的极限化为简单.an ?1 例 4.求极限lim n,此时 n →∞ a + 2 有,令 解:若 5.单调有界原理

4.例 5.证明数列 证: 令 我们用归纳法证明 若 ≤2 则 则 有极限,并求其极限。,易知{ }递增,且 ≤2.显然。中两 故由单调有界原理{ }收敛,设 →,则在 边取极限得 即 解之得 =2 或 =-1 明显不合要求,舍去,从而

5.6.6.先用数学归纳法,再求极限.1 ? 3 ? 5 ? L ?(2n ? 1)例 6:求极限 lim n →∞ 2 ? 4 ? 6 ? L ? 2n 1 3 5 2n ? 1 1 解: 0 < ? ? ? L ? < 2 4 6 2n 2n + 1 1 3 5 2n ? 1 S= ? ? ? L ? 2 4 6 2n 2 4 2n 设 S * = ? ?L? 则有 S< S * 3 5 2n + 1 1 S2=S*S

7.7.利用两个重要极限 lim = 1 , lim(1 +)x = e.x →0 x → +∞ x x 2 例 7:求 lim(1 +)x x → +∞ x x x 2 1 解: 原式= lim(1 +)2 ?(1 +)2 = e ? e = e 2 x → +∞ x x

8.8.利用等价无穷小来求极限 将数列化成自己熟悉的等价无穷小的形式然后求极限., lim 例 8:求 lim x→+ 而0 < S < 1 1 1 + x sin x ? 1 ex ?1 2 解:当 x → 0 的时候, x sin x → 0 , 1 + x sin x ? 1 ~ 而此时, e x ? 1 ~ x 2 ,所以 x sin x 1 原式= lim = x →0 2 x 2 2 0 ∞

9.9.用洛必达法则求极限.适用于 和 型 0 ∞ 1 ? cos x 例 9:求 lim x →0 x2 0 解: 是 待定型.0 1 ? cos x sin x 1 = lim lim = 2 x →0 x →0 2 x 2 x

10.10.积分的定义及性质 1p + 2 p + 3 p + L + n p 例 10:求 lim(p > 0)n → +∞ n p +1 1p + 2 p + 3 p + L +n p 1 n i 解: lim(p > 0)= lim ∑()p n → +∞ n → +∞ n n p +1 i =1 n p 设 f(x)= x ,则 f(x)在[0,1]内连续, 1 i i ?1 i ?x i = , 取 ξ i = ∈ [ , ] n n n n i 所以, f(ξ i)=()p n 1 1 所以原式= ∫ x p dx = 0 p +1

11.11.级数收敛的必要条件.2 x sin x.2 设 ∑ u n 等于所求极限的表达式 , 再证∑ u n 是收敛的, 据必要条件知所求表达式的 n =1 n =1 ∞ ∞ 极限为 0.例 11:求 lim n → +∞ n!nn ∞ u 1 1 n!= <1 ,则 lim n +1 = lim n n → +∞ u n → +∞ 1 e n n =1 n(1 +)n n n!所以该级数收敛,所以 lim n =0 n → +∞ n

12.12.对表达式进行展开、合并、约分和因式分解以及分子分母有理化,三角函数 的恒等变形。sin 5 x ? sin 3 x 例 12.求 lim x →0 sin 2 x 解: ? sin 5 x 2 x 5 sin 3 x 2 x 3 ? 5 3 法一:原式= lim ? ? ? ? ? ? = ? =1 x →0 3 x sin 2 x 2 ? 2 2 ? 5 x sin 2 x 2 ? 5 x + 3x 5 x ? 3x 2 cos sin 2 cos 4 x sin x 2 cos 4 x 2 2 法二:原式= lim = lim = lim =1 x →0 x → 0 2sin x cos x x → 0 2 cos x sin 2 x

13.13.奇数列和偶数列的极限相同,则数列的极限就是这个极限。(?1)x 例 13:求 lim x 的值 x→∞ 2 ?1 解:奇数列为 lim x =0 x→∞ 2 1 偶数列为 lim x =0 x→∞ 2(?1)x 所以 lim x =0 x→∞ 2

14.14.利于泰勒展开式求极限。解:设 ∑ u n = 例 14.求 lim(5 x 5 + x 4 ? 5 x 5 ? x 4)1 1 ? 1 1 1 ? 解:原式= lim x ?(1 +)5 ?(1 ?)5 ?(令 t=)x → +∞ x x x ? ? 1 ? 1 ? 1 + t + o(t)? ?1 ? t + o(t)? 1 1 ? 1? 5 ? 5 ?=2 = lim ?(1 + t)5 ?(1 ? t)5 ? = t → +0 t t 5 ? ?

15.15.利于无穷小量的性质和无穷小量和无穷大量之间的关系求极限。利用无穷小量与有界变量的乘积仍为无穷小量,无穷小量与无穷大量互为倒数 的关系,以及有限个无穷小的和仍是无穷小等等。1 例 15:求 lim 2 sin x 的值 x →∞ x 1 是无穷小量,而 lim sin x 是有界变量,所以 x →∞ x 2 x →∞ 1 lim 2 sin x 还是无穷小量,即 x →∞ x 1 lim 2 sin x =0 x →∞ x

16.16.利用数列的几何、算术平均值求极限。数列{ an }有极限,则它的几何平均值和算术平均值的极限与与原极限相同。解:因为 lim 例 16:求 lim n an 的值 n →∞ 解: lim n an = lim n n →∞ n →∞ an a a a a a ? 2 ? 1 ? a0 = lim n n ? 2 ? 1 ? lim n a0 n →∞ an ?1 a1 a0 an ?1 a1 a0 n →∞ 设 bn = an,因为知 lim n an =1 n →∞ an?1 an an ?1 所以,所求原式的极限就等于{ bn }的极限 即原式= lim bn = lim n →∞ n →∞

17.17.绝对值中的极限 若 a n → a(n → ∞),则 a n → a(n → ∞)例 17:求 lim 1 的值 x →∞ x 3 1 1 解: lim 3 = lim 3 =0 x →∞ x x →∞ x

第三篇:2018考研数学:数列极限方法总结归纳

为学生引路,为学员服务

2018考研数学:数列极限方法总结归纳

极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。下面凯程考研就分享一下数列极限方法,大家注意学习。

极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下:

极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。

四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。

为学生引路,为学员服务

页 共 2 页

为学生引路,为学员服务

页 共 3 页

第四篇:求极限方法

首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先对极限的总结如下

极限的保号性很重要就是说在一定区间内函数的正负与极限一致

1极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x),没告诉你是否可导,直接用无疑于找死!)

必须是0比0无穷大比无穷大!!!!!

当然还要注意分母不能为0

落笔他 法则分为3中情况0比0无穷比无穷时候直接用

20乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了

30的0次方1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要 特变注意!!)

E的x展开sina展开cos展开ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)!!!

当x趋近无穷的时候他们的比值的极限一眼就能看出来了换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!!)

一,求极限的方法横向总结:

1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)

2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到

2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。

3等差数列与等比数列和求极限:用求和公式。

4分母是乘积分子是相同常数的n项的和求极限:列项求和

5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。

6运用重要极限求极限(基本)。

7乘除法中用等价无穷小量求极限。

8函数在一点处连续时,函数的极限等于极限的函数。

9常数比0型求极限:先求倒数的极限。

10根号套根号型:约分,注意别约错了。

11三角函数的加减求极限:用三角函数公式,将sin化cos

二,求极限的方法纵向总结:

1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。

2未知数趋近于0或无穷:1)将x放在相同的位置

2)用无穷小量与有界变量的乘积

3)2个重要极限

4)分式解法(上述)

第五篇:求极限总结

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0

落笔他 法则分为3中情况0比0 无穷比无穷 时候 直接用0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)E的x展开 sina 展开 cos 展开 ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x

比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!

当x趋近无穷的时候 他们的比值的极限一眼就能看出来了换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

(0)

回复

1楼2014-03-19 20:22举报 |来自Android客户端

张806788364

举人5

函数的性质也体现在积分 微分中

例如他的奇偶性质 他的周期性。还有复合函数的性质

1奇偶性,奇函数关于原点对称 偶函数关于轴对称 偶函数左右2边的图形一样(奇函数相加为0)

2周期性也可用在导数中 在定积分中也有应用 定积分中的函数是周期函数 积分的周期和他的一致复合函数之间是 自变量与应变量互换 的 关系

4还有个单调性。(再求0点的时候可能用到这个性质!)

(可以导的函数的单调性和他的导数正负相关)

:o 再就是总结一下间断点的问题(应为一般函数都是连续的 所以 间断点 是对于间断函数而言的)

间断点分为第一类 和第二类剪断点第一类是左右极限都存在的(左右极限存在但是不等 跳跃的的间断点 或者 左右极限存在相等但是不等于函数在这点的值 可取的间断点

地二类 间断点是 震荡间断点 或者是 无穷极端点

(这也说明极限即是 不存在也有可能是有界的)

:o 下面总结一下

求极限的一般题型求分段函数的极限

当函数含有绝对值符号时,就很有可能是有分情况讨论的了!!!!

当X趋近无穷时候 存在e的x次方的时候,就要分情况讨论 应为 E的x次方的函数正负无穷的结果是不一样的!!!!极限中含有变上下限的积分 如何解决类????

说白了 就是说 函数中现在含有积分符号,这么个符号在极限中太麻烦了 你要想办法把它搞掉!!!!!!!!

解决办法 :

1求导,边上下限积分求导,当然就能得到结果了 这不是很容易么?

但是!!!有2个问题要注意!!

问题1 积分函数能否求导? 题目没说积分可以导的话,直接求导的话是错误的!!问题2 被积分函数中 既含有T又含有x的情况下如何解决??????

解决1的方法: 就是方法2 微分中值定理!!!!!

微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!!!

解决2的方法 : 当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!!

下载求数列极限的方法总结[精选多篇]word格式文档
下载求数列极限的方法总结[精选多篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    求函数极限方法的若干方法

    求函数极限方法的若干方法 摘要: 关键词: 1引言:极限的重要性 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在x=x0处导数的定义,定积分的......

    求极限的方法小结

    求极限的方法小结 要了解极限首先看看的定义哦 A.某点处的极限与该点处有无定义和连续无关,但在该点周围(数列除外)的必 某点处的极限与该点处有无定义和连续无关, 某点处的极......

    求函数极限的常用方法

    求函数极限的常用方法袁得芝函数极限是描述当x→x0或x→∞时函数的变化趋势,求函数极限,常用函数极限的四则运算法则和两个重要结论limnnlim1xx0,0.涉及到单侧极限与nxx0xx双侧......

    1-1求极限方法小结

    求极限方法小结求极限方法大概归结为:一 利用单调有界数列有极限先证明极限的存在性,再利用题中条件求出极限。二 转化为已知极限。这里通常利用如下手段进行转化。(一)夹逼定理......

    求极限的方法及例题总结解读

    1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;x2lim(3x1)5 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不......

    常用求极限方法的探索与总结

    论文题目:————————学院:——————————专业班级:—————————— 姓名:—————————— 学号:——————常用求极限方法的探究与总结摘要:求数列和函数......

    高等数学B上册 求极限方法总结

    锲而舍之,朽木不折;锲而不舍,金石可镂。出自----荀子----《劝学》求极限的几种常用方法1.约去零因子求极限例1:求极限limx1x41x1【说明】x1表明x与1无限接近,但x1,所以x1这一零因子......

    数列极限例题

    三、数列的极限 (1)n1}当n时的变化趋势. 观察数列{1n问题: 当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: (1)n1当n无限增大......