高数:总结求极限的常用方法5篇

时间:2019-05-12 07:54:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高数:总结求极限的常用方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高数:总结求极限的常用方法》。

第一篇:高数:总结求极限的常用方法

总结求极限的常用方法,详细列举,至少4种

极限定义法 泰勒展开法。洛必达法则。

等价无穷小和等价无穷大。

极限的求法 1.直接代入法

适用于分子、分母的极限不同时为零或不同时为

例 1.求

极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

(x趋近无穷的时候还原成无穷小)

2落笔他 法则

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!必须是 函数的导数要存在!!!!必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)

E的x展开 sina 展开 cos 展开 ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!

当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式。)

第二篇:高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致 极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况 0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)

E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

(从网上发现,谢谢总结者)

第三篇:求极限方法

首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先对极限的总结如下

极限的保号性很重要就是说在一定区间内函数的正负与极限一致

1极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x),没告诉你是否可导,直接用无疑于找死!)

必须是0比0无穷大比无穷大!!!!!

当然还要注意分母不能为0

落笔他 法则分为3中情况0比0无穷比无穷时候直接用

20乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了

30的0次方1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要 特变注意!!)

E的x展开sina展开cos展开ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)!!!

当x趋近无穷的时候他们的比值的极限一眼就能看出来了换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!!)

一,求极限的方法横向总结:

1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)

2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到

2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。

3等差数列与等比数列和求极限:用求和公式。

4分母是乘积分子是相同常数的n项的和求极限:列项求和

5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。

6运用重要极限求极限(基本)。

7乘除法中用等价无穷小量求极限。

8函数在一点处连续时,函数的极限等于极限的函数。

9常数比0型求极限:先求倒数的极限。

10根号套根号型:约分,注意别约错了。

11三角函数的加减求极限:用三角函数公式,将sin化cos

二,求极限的方法纵向总结:

1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。

2未知数趋近于0或无穷:1)将x放在相同的位置

2)用无穷小量与有界变量的乘积

3)2个重要极限

4)分式解法(上述)

第四篇:求极限总结

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0

落笔他 法则分为3中情况0比0 无穷比无穷 时候 直接用0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)E的x展开 sina 展开 cos 展开 ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x

比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!

当x趋近无穷的时候 他们的比值的极限一眼就能看出来了换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

(0)

回复

1楼2014-03-19 20:22举报 |来自Android客户端

张806788364

举人5

函数的性质也体现在积分 微分中

例如他的奇偶性质 他的周期性。还有复合函数的性质

1奇偶性,奇函数关于原点对称 偶函数关于轴对称 偶函数左右2边的图形一样(奇函数相加为0)

2周期性也可用在导数中 在定积分中也有应用 定积分中的函数是周期函数 积分的周期和他的一致复合函数之间是 自变量与应变量互换 的 关系

4还有个单调性。(再求0点的时候可能用到这个性质!)

(可以导的函数的单调性和他的导数正负相关)

:o 再就是总结一下间断点的问题(应为一般函数都是连续的 所以 间断点 是对于间断函数而言的)

间断点分为第一类 和第二类剪断点第一类是左右极限都存在的(左右极限存在但是不等 跳跃的的间断点 或者 左右极限存在相等但是不等于函数在这点的值 可取的间断点

地二类 间断点是 震荡间断点 或者是 无穷极端点

(这也说明极限即是 不存在也有可能是有界的)

:o 下面总结一下

求极限的一般题型求分段函数的极限

当函数含有绝对值符号时,就很有可能是有分情况讨论的了!!!!

当X趋近无穷时候 存在e的x次方的时候,就要分情况讨论 应为 E的x次方的函数正负无穷的结果是不一样的!!!!极限中含有变上下限的积分 如何解决类????

说白了 就是说 函数中现在含有积分符号,这么个符号在极限中太麻烦了 你要想办法把它搞掉!!!!!!!!

解决办法 :

1求导,边上下限积分求导,当然就能得到结果了 这不是很容易么?

但是!!!有2个问题要注意!!

问题1 积分函数能否求导? 题目没说积分可以导的话,直接求导的话是错误的!!问题2 被积分函数中 既含有T又含有x的情况下如何解决??????

解决1的方法: 就是方法2 微分中值定理!!!!!

微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!!!

解决2的方法 : 当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!!

第五篇:高数极限习题

第二章 导数与微分

典型例题分析

客观题

例 1 设f(x)在点x0可导,a,b为常数,则limf(x0ax)f(x0bx)xabx0()

f(x0)Aabf(x0)

B(ab)f(x0)

C(ab)f(x0)

D

答案 C

f(x0ax)f(x0bx)limx0x[f(x0ax)f(x0)][f(x0bx)f(x0)]lim x0x

f(x0bx)f(x0)f(x0ax)f(x0)blim

alim

x0x0bxax

(ab)f(x0)

例2(89303)设f(x)在xa的某个邻域内有定义,则f(x)在xa处可导的一个充分条件是()1f(a2h)f(ah)(A)limhfaf(a)存在(B)lim存在h0hhh(C)limf(ah)f(ah)2hh0存在(D)limf(a)f(ah)h存在h0答案 D

解题思路

(1)对于答案(A),不妨设

1hx,当h时,x0,则有

1f(ax)f(a)limhfaf(a)lim存在,这只表明f(x)在xa处hx0hx右导数存在,它并不是可导的充分条件,故(A)不对.(2)对于答案(B)与(C),因所给极限式子中不含点a处的函数值f(a),因此与导数概念不相符和.例如,若取

1,xaf(x)

0,xa则(B)与(C)两个极限均存在,其值为零,但limf(x)0f(a)1,从而f(x)在xaxa处不连续,因而不可导,这就说明(B)与(C)成立并不能保证f(a)存在,从而(B)与(C)也不对.(3)记xh,则x0与h0是等价的,于是 limf(a)f(ah)hh0limf(ah)f(a)hh0limf(ah)f(a)h

h0x所以条件D是f(a)存在的一个充分必要条件.例3(00103)设f(0)0,则f(x)在点x0可导的充要条件为()x0limf(ax)f(a)f(a)(A)lim1h1h2h0f(1cosh)存在(B)lim1h1hh0f(1e)存在

h(C)limh02f(hsinh)存在(D)limh0f(2h)f(h)存在

答案 B

解题思路

(1)当h0时, 1coshhh02limf(1cosh)h2h0lim2f(1cosh)f(0)h21.所以如果f(0)存在,则必有

limf(1cosh)f(0)1coshh0lim1coshh2h0若记u1cosh,当h0时,u0,所以

f(1cosh)f(0)f(u)f(0)limlimf(0)h0h01coshu于是

limf(1cosh)h2h012f(0)

1h2这就是说由f(0)存在能推出limh0f(1cosh)存在.h0,而不是u0,因此 但是由于当h0时,恒有u1cos1f(x)f(0)f(0)limlim2f(1cosh)存在只能推出存在,而不能推出f(0)h0hx0x存在.

(2)当h0时, 1eho(h),于是

hlimf(1e)hhh0limf(ho(h))f(0)hh0limf(ho(h))f(0)ho(h)

h0 由于当h0时, ho(h)既能取正值,又能取负值,所以极限limf(ho(h))f(0)ho(h)h0存在与limf(h)f(0)hh0f(0)存在是互相等价的.因而

极限lim1hh0hf(1e)存在与f(0)存在互相等价.(3)当h0时, 用洛比塔法则可以证明limlimf(hsinh)h2h0,所以 6hf(hsinh)f(0)hsinhlimlimh 3h0h0hsinhhh03hsinh1由于h0,于是由极限limf(hsinh)f(0)hsinhh0limhsinhh3h0h存在未必推出hsinh(4)f(x)在点x0可导一定有(D)存在,但(D)存在不一定f(x)在点x0可导.h0limf(hsinh)f(0)也存在,因而f(0)未必存在.例 4(98203)函数f(x)(xx2)|xx|有()个不可导点

(A)0(B)1(C)2(D)3

答案 C

解题思路 当函数中出现绝对值号时,不可导的点就有可能出现在函数的零点,因为函数零点是分段函数的分界点.因此需要分别考察函数在点x00,x11,x21考察导数的存在性.解 将f(x)写成分段函数:

23(x22(xf(x)2(x(x2x2)x(1x),x2)x(x1),x2)x(1x),x2)x(x1),2222x1,1x0,0x1,1x.(1)在x00附近,f(x)写成分段函数:

22x(xx2)(x1),x023 f(x)(xx2)|xx|22x(xx2)(1x),x0容易得到

f(x)f(0)22f(0)limlim(xx2)(x1)2

x0x0xf(x)f(0)22f(0)limlim(xx2)(1x)2

x0x0x由于f(0)f(0),所以f(0)不存在.(2)在x11附近,f(x)写成分段函数:

2x(1x)(xx2)(1x),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1由于f(1)f(1),所以f(1)不存在.(3)在x21附近,f(x)写成分段函数:

2x(1x)(xx2)(x1),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(1)limf(x)f(1)x1x0x1由于f(1)f(1)0,所以f(1)存在.x1f(1)limx1f(x)f(1)limx1x(x1)(x22x2)0

limx(x1)(xx2)0

综合上述分析,f(x)有两个不可导的点.例5(95103)设f(x)具有一阶连续导数,F(x)f(x)(1|sinx|),则f(0)0是F(x)在x0处可导的()

(A)必要但非充分条件

(B)充分但非必要条件

(C)充分且必要条件

(D)既非充分也非必要条件

答案 C

分析 从F(x)在x0的导数定义着手.将F(x)f(x)(1|sinx|)f(x)f(x)|sinx| 解

F(x)F(0)f(x)f(0)f(x)|sinx|f(0)|sin0|limlimF(0)lim

x0x0x0x0x0x0

f(0)f(0)

f(x)f(0)f(x)|sinx|f(0)|sin0|F(x)F(0)limlimF(0)lim

x0x0x0x0x0x0f(0)f(0)

于是推知F(0)F(0)的充分必要条件是f(0)0. 例6(92103)设函数f(x)3xx|x|,则使f32(n)(0)存在的最高阶数n().(A)0

(B)1(C)

2(D)3

答案 C

解题思路 应先去掉f(x)中的绝对值,将f(x)改写为分段函数

2x3 f(x)3xx|x|34x32x0x0x0x0

2x3 解 由f(x)3xx|x|34x32

6x2得f(x)212xx0x0

12x且f(x)24x又f(0)limx012 f(x)x024x0x0x0

f(x)f(0)x0limx02x03x00,f(0)limf(x)f(0)x0x0limx04x03x020

所以f(0)存在.f(0)limf(x)f(0)x0x0limx06x0x012x0 00 f(0)limf(x)f(0)x02limx0x0x0所以f(0)存在.f(0)limf(x)f(0)x0x0limx012x0x012

x0即f(0)f(0).因而使fx0f(0)limf(x)f(0)24

x0(n)(0)存在的最高阶数是2.x0lim24x0

例7 f(x)cos|x|x2|x|存在的最高阶导数的阶数等于()

A

0

B 1

C 2

D 3 答案 C 解题思路 注意cos|x|cosx,所以只需考察x|x|在点x0的情况.例8(96203)设0,f(x)在区间(,)内有定义,若当x(,)时,恒有f(x)x,则x0必是f(x)的()

(A)间断点,(B)连续而不可导的点,(C)可导的点,且2f'(0)0

(D)可导的点,且f'(0)0

答案

C

解 由题目条件易知f(0)0,因为

|所以由夹逼定理

f(x)f(0)x||f(x)xf(x)x||x2x|

2lim|x0f(x)f(0)x|lim|x0|lim|x0xx|0

于是f(0)0.1ex,x0, 则f(0)为()

例9(87103)设f(x)x0,x0.

1(A)0

(B)

(C)1

(D)1

2答案

(C)

解题思路

因f(x)为分段函数,故它在分段点处的导数应按导数的定义,又由于是未定式,可用洛必达法则求极限.200型解

1e f(0)limx2f(x)f(0)x0ulimx0x0xx00lim1exx2x02x

2当u0时,e 1与u是等价无穷小,所以当x0时,1e与x是等价无穷小.因而

2lim1exx2x021

12,则x0时,f(x)在x0处的微分dy与

例10(88103)设f(x)可导且f(x0)x比较是()的无穷小.(A)等价(B)同阶(C)低阶(D)高阶

答案 B

解题思路

根据yf(x)在xx0处的微分的定义:dyf(x0)x.x12 解 limlim,可知dy与x是同阶的无穷小.x0xx0x21xsin,x0

例11(87304)函数f(x)在x0处()xx00,dy

(A)连续,且可导

(B)连续,不可导

(C)不连续

(D)不仅可导,导数也连续

答案 B

解题思路

一般来说,研究分段函数在分段点处的连续性时,应当分别考察函数的左右极限;在具备连续性的条件下,为了研究分段函数在分界点处可导性,应当按照导数定义,或者分别考察左右导数来判定分段函数在分段点处的导数是否存在.因此,本题应分两步:(1)讨论连续性;(2)讨论可导性.解(1)讨论函数在点x0处的连续性

10f(0),可知函数f(x)在点x0处是连续的.由于limf(x)limxsinx0x0x

(2)讨论函数在点x0处的可导性

1xsin0f(x)f(0)1xlimlimsin

由于lim不存在,所以,函数f(x)在点

x0x0x0x0xxx0处不可导.x

例12 设f(x)p必须满足()p1sin01x,x0,x0 在点x0可导,但是f(x)导数在点x0不连续,则

A0p1

B1p2

C0p2

D1p答案 B

解题思路

(1)当p1时,下述极限不存在: x因此f(0)不存在.当p1时, x0limf(x)f(0)xsinlimx0p1xlimxp1sin1

x0xxx所以f(0)0.x0limf(x)f(0)xsinlimx0p1xlimxp1sin10

x0xx这就是说,只有当p1时, f(0)才存在,所以选项A,C可以被排除.(2)当p1时

0,x0 f(x)11p1p2sinxcos,x0pxxx当且仅当p20,即p2时,limf(x)0f(0),所以当且仅当1p2时,x0f(x)在点x0可导,但是f(x)在点x0不连续.例13(95403)设f(x)可导,且满足条件limf(1)f(1x)2x12x01,则曲线yf(x)在(1,f(1))处的切线斜率为()(A)2,(B)2,(C),(D)1

答案 B

解 记ux,则有

f(1)f(1x)1f(1u)f(1)1limlimf(1)x02x2u0u2

例1

4设yln(12x),则y

(A)(10)()

9!(12x)10

(B)9!(12x)10

(C)10!2910(12x)

(D)9!21010(12x)

答案 D

解题思路

求高阶导数的一般方法是: 先求出一阶、二阶、三阶导数;找出规律,即可写出高阶导数.2y, 12x21y(2)(1)(2)(1)(2)

22(12x)(12x)y(2)(1)(2)(2)2(12x)3

y(10)9!21010(12x).例17

(90103)设函数f(x)有任意阶导数,且f(x)f(x),则f(n)(x)(n1),(n2).n1(A)n!f(x)(B)nf(x)(C)f2n(x)(D)n!f2n(x)

答案 A

解题思路 这是一个求高阶导数的问题,涉及到求抽象函数的导数.解

由f(x)有任意阶导数且f(x)f(x),可知

2f(x)f(x)32f(x)f(x)2f(x)ff(x)2f(x)32f(x)f(x)3!f2(n)n12(x)2f(x),(x)

34依此由归纳法可知 f(x)n!f(x)

注意(1)当n1,n2时虽然(B)也正确,但当n2就不正确了,所以将(B)排除之;

222(2)在求导数f(x)时,可将函数f(x)看成是由yt与tf(x)复合而成的,(t)f(x)2tf(x)2f(x)f(x).(初学者可能会这样做:f(x)2f(x),后面丢掉一个因子f(x).则根据复合函数的求导法则,故f(x)222

例18(91303)若曲线yxaxb和2y1xy在点(1,1)处相切,其中

23a,b是常数,则()(A)a0,b

2(B)a1,b3

(C)a3,b

1(D)a1,b1

答案 D

解题思路

两曲线在某点相切就是指两曲线在此公共点处共一条切线,从而两曲线的斜率也应相等.解

曲线yxaxb在点(1,1)处的斜率是

2k1(xaxb)2x1(2xa)x132a

另一条曲线是由隐函数2y1xy确定,该曲线在点(1,1)处的斜率可以由隐函数求导数得到: 对于方程2y1xy两边求导得到2y3xyyy,解出y得到此曲线在点(1,1)处的斜率为

k2yx1y1323y3223xy1

x1y12令k1k2,立即得到a1.再将a1,x1,y1代入yxaxb中得出b1.例19设f(x),g(x)定义在(1,1),且都在x0处连续,若g(x)x0f(x)x,则()x02(A)limg(x)0且g'(0)0,(B)limg(x)0且g'(0)1

x0x0(C)limg(x)1且g'(0)0

(D)limg(x)0且g'(0)2

x0x0 答案 D

解题思路 分析函数f(x)的表达式,并运用f(x)在x0处连续这一关键条件.解 既然f(x)在x0处连续,于是必有limf(x)limx0g(x)xx02,于是必有limg(x)0.于是又有g(0)limx0g(x)g(0)xx0limg(x)xx02.1cosx 例 20(99103)设f(x)x2xg(x)x0x0 其中g(x)是有界函数,则f(x)在x0处()(A)极限不存在(B)极限存在,但不连续

(C)连续,但不可导(D)可导

答案 D

解题思路

若能首先判定f(x)在x0处可导,则(A)、(B)、(C)均可被排除.解

x f(0)lim21f(x)f(0)x0x0x2limx01cosx3limx023limx0x2x)

2x220

(x0时1cosx~ f(0)lim2f(x)f(0)x0xx0由于f(x)在x0点的左导数等于右导数,因而 f(x)在x0处可导.x0x0limxg(x)2limxg(x)0(g(x)是有界函数)

 例21 设f(x)sinx,则(f(f(x)))()A.cos(sinx)cosx B.sin(sinx)cosx C.cos(cosx)sinx D.sin(cosx)sinx

答案 A

例 22 设f(x)是可导函数,则()A.若f(x)为奇函数,则f(x)为偶函数B.若f(x)为单调函数C.若f(x)为奇函数,则f(x)为奇函数D.若f(x)为非负函数 答案 A

解题思路 根据导数定义,利用函数的奇性.解 由于f(u)f(u),所以 ,则f(x)为单调函数 ,则f(x)为非负函数

f(x)limlimf(xx)f(x)xf[x(x)]f(x)x0limf(xx)f(x)x

x0x因此f(x)为偶函数.x0f(x)例23 设yesinsin22x,则dy()sin2 B.2eA.esinx C.2e 答案 D

解题思路 运用复合函数微分法

例 24 设f(0)存在,lim(1x0xxsin2xsincosx D.e2xsin2x

1cosf(x)sinx1)xe,则f(0)()A.0 B.1 C.答案 C

解 由 C.e

lim(1x01cosf(x)sinx1)xe

可以知道当x0时,有

lim(参阅第一章1.5的例2)

x011cosf(x)1 xsinxf2当x0时,sinx与x是等价无穷小,1cosf(x)与

(x)2是等价无穷小.于是

f(x)11cosf(x)1limlim1 2x0xx0sinx2x又因为f(0)存在,所以此式又推出 f(0)limf(x)xx022.1,x0arctan 例 25 设f(x) 在点x0可导,则()xaxb,x0A.a1,b2 B.a1,b0 C.a1,b2 D.a1,b2

答案D

解题思路 先考察函数在点x0左右极限,确定连续性,再考察左右导数.由可微性最终确定a,b.解

1,所以b.(1)limf(x)lim(axb)b,limf(x)limarctanx0x0x22x0x0于是f(0)2.(2)f(0)a,f(0)limx0f(x)f(0)arctanlimx01xx2

xarctan1xx2: 以下需要用洛比塔法则求极限limx0

arctanlimx01x2lim(arctan1xx2)limx01x2xx0于是由f(0)f(0)推出a1

11

例26.(93303)若f(x)f(x),且在(0,)内f(x)0,f(x)0,则f(x)在(,0)内必有

(A)f(x)0,f(x)0(B)f(x)0,f(x)0

(C)f(x)0,f(x)0(D)f(x)0,f(x)0 答案 C

解体思路 所给函数显然是奇函数,因此f(x)是偶函数,f(x)是奇函数.解 由f(x)0,x(0,)知f(x)0,x(,0);由f(x)0,x(0,)知f(x)0,x(,0).

下载高数:总结求极限的常用方法5篇word格式文档
下载高数:总结求极限的常用方法5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    求函数极限方法的若干方法

    求函数极限方法的若干方法 摘要: 关键词: 1引言:极限的重要性 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在x=x0处导数的定义,定积分的......

    求极限的方法小结

    求极限的方法小结 要了解极限首先看看的定义哦 A.某点处的极限与该点处有无定义和连续无关,但在该点周围(数列除外)的必 某点处的极限与该点处有无定义和连续无关, 某点处的极......

    求函数极限的常用方法

    求函数极限的常用方法袁得芝函数极限是描述当x→x0或x→∞时函数的变化趋势,求函数极限,常用函数极限的四则运算法则和两个重要结论limnnlim1xx0,0.涉及到单侧极限与nxx0xx双侧......

    1-1求极限方法小结

    求极限方法小结求极限方法大概归结为:一 利用单调有界数列有极限先证明极限的存在性,再利用题中条件求出极限。二 转化为已知极限。这里通常利用如下手段进行转化。(一)夹逼定理......

    求极限的方法及例题总结解读

    1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;x2lim(3x1)5 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不......

    常用求极限方法的探索与总结

    论文题目:————————学院:——————————专业班级:—————————— 姓名:—————————— 学号:——————常用求极限方法的探究与总结摘要:求数列和函数......

    高等数学B上册 求极限方法总结

    锲而舍之,朽木不折;锲而不舍,金石可镂。出自----荀子----《劝学》求极限的几种常用方法1.约去零因子求极限例1:求极限limx1x41x1【说明】x1表明x与1无限接近,但x1,所以x1这一零因子......

    求数列极限的方法总结[5篇材料]

    求数列极限 数学科学学院数学与应用数学 11级电子 张玉龙 陈进进指导教师 鲁大勇 摘 要 数列极限的求法一直是数列中一个比较重要的问题, 本文通过归纳和总结, 从不同 的方面......