第一篇:abltch《数学分析》9数列极限存在的条件
-+
懒惰是很奇怪的东西,它使你以为那是安逸,是休息,是福气;但实际上它所给你的是无聊,是倦怠,是消沉;它剥夺你对前途的希望,割断你和别人之间的友情,使你心胸日渐狭窄,对人生也越来越怀疑。
—罗兰
§3 数列极限存在的条件
教学目的:使学生掌握判断数列极限存在的常用工具。
教学要求:(1)掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;(2)初步理解Cauchy
准则在极限理论中的主要意义,并逐步会应用Cauchy准则判断某些数列的敛散性。
教学重点:单调有界定理、Cauchy收敛准则及其应用。
教学难点:相关定理的应用。
教学方法:讲练结合。
教学程序:
引言
在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。在实际应用中,解决了数列an极限的存在性问题之后,即使极限值的计算较为困难,但由于当n充分大时,an能充分接近
其极限a,故可用an作为a的近似值。
本节将重点讨论极限的存在性问题。
为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。
从收敛数列的有界性可知:若an收敛,则an为有界数列;但反之不一定对,即an有界不足以保
证an收敛。例如(1)n。但直观看来,若an有界,又an随n的增大(减少)而增大(减少),它就
有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛)。
为了说明这一点,先给出具有上述特征的数列一个名称——单调数列。
一、单调数列
定义若数列an的各项满足不等式anan1(aan1),则称an为递增(递减)数列。递增和递
减数列统称为单调数列. (1)n12例如:为递减数列;n为递增数列;不是单调数列。nn
二、单调有界定理
〔问题〕(1)单调数列一定收敛吗?;(2)收敛数列一定单调吗?
一个数列an,如果仅是单调的或有界的,不足以保证其收敛,但若既单调又有界,就可以了。此
即下面的极限存在的判断方法。
定理(单调有界定理)在实数系中,有界且单调数列必有极限。
三、应用
2例1 设an1131n,n1,2,其中2,证明数列an收敛。
例2 证明下列数列收敛,并求其极限:
n个根号
例3.证明lim(n存在。)n1n
四、柯西收敛准则
1.引言
单调有界定理只是数列收敛的充分条件,下面给出在实数集中数列收敛的充分必要条件——柯西收敛准则。
2.Cauchy收敛准则:
定理(Cauchy收敛准则)数列an收敛的充分必要条件是:对任给的0,存在正整数N,使
得当n,mN时有|anam|。
3.说明
(1)Cauchy收敛准则从理论上完全解决了数列极限的存在性问题。
(2)Cauchy收敛准则的条件称为Cauchy条件,它反映这样的事实:收敛数列各项的值愈到后面,彼此愈接近,以至于充分后面的任何两项之差的绝对值可以小于预先给定的任意小正数。或者,形象地说,收敛数列的各项越到后面越是“挤”在一起。
(3)Cauchy准则把N定义中an与a的之差换成an与am之差。其好处在于无需借助数列以外的数a,只要根据数列本身的特征就可以鉴别其(收)敛(发)散性。
4.应用
例证明an1101
1021收敛。n10
例证明an1121发散。n
第二篇:第一讲 数列极限(数学分析)
第一讲 数列极限
一、上、下确界
1、定义:
1)设SR,若MR:xS,xM,则称M是数集S的一个上界,这时称S上有界;若LR:xS,xL,则称L是数集S的一个下界,这时称S下有界;当S既有上界又有下界时就称S为有界数集。
2)设SR,若MR:xS,xM,且0,xS:xM,则称M是数集S的上确界,记MsupS;若LR:xS,xL,且0,xS:xL,则称L是数集S的下确界,记LinfS。
2、性质:
1)(确界原理)设SR,S,若S有上界,则S有上确界;若S有下界,则S有下确界。
2)当S无上界时,记supS;当S无下界时,记infS。
3)sup(AB)max{supA,supB};inf(AB)min{infA,infB}。
4)supSinf(S);infSsup(S)。
5)sup(AB)supAsupB;inf(AB)infAinfB。
6)sup(AB)supAinfB。(武大93)
7)设f(x),g(x)是D上的有界函数,则
inff(D)infg(D)inf{f(x)g(x)}supf(D)infg(D)xD
sup{f(x)g(x)}supf(D)supg(D)
xD3、应用研究
1)设{xn}为一个正无穷大数列,E为{xn}的一切项组成的数集,试证必存在自然数p,使得xpinfE。(武大94)
二、数列极限
1、定义:
1)limana0,NN():nN,|ana|,称{an}为收敛数列; n
2)limanM0,N:nN,anM,称{an}为数列; n
3)limanM0,N:nN,anM,称{an}为数列; n
4)limanM0,N:nN,|an|M,称{an}为数列;
n
5)liman0,称{an}为无穷小数列;
n
2、性质
1)唯一性:若limana,limanbab。
n
n
2)有界性:若{an}为收敛数列,则{an}为有界数列。3)保号性:limana0N,nN,an0.n
4)保不等式性:若limana,limbnb,anbn(nN0)ab.n
n
5)迫敛性:若ancnbn(nN0),limanlimbnclimcnc.n
n
n
6)四则运算:若limana,limbnb,则
n
n
lim(anbn)ab;lim(anbn)ab;lim
n
n
bnb
(a0)。
naan
xnxn1xxxn
1存在,则limnlimn。
nnynyn1ynynyn1
7)Stolz定理:设{yn}为严格增的数列,若lim
n
证明:(1)Sn明)
aaaana1a
2(用归纳法证,,nbk0,k1,2,,n,则minSn12maxSn。
b1b2bnb1b2bn
acaacc
,b0,d0a(bd)b(ac),(ac)d(bd)c,bdbbdd
minSn1minSn
an1a1anan1a1anan1
;
bn1b1bnbn1b1bnbn1an1a1anan1a1anan1
。
bn1b1bnbn1b1bnbn1
maxSn1maxSn
(2)设lim
n
xnxn1xxxx
r0,k,nk:|nn1r|,由(1)得|nkr|,又
ynyn1ynyn12ynyk2
xk
y
rkyxx
nrk,又|因为ynyk
xnxrykyxxkx
rk(1knr),所以|nr|ynynynynykynlim
n
xkrykxrykx
0Nk,nN:|k|,从而|nr|(nN)
nynyn2yn3、极限存在条件:
1)(Cauchy收敛准则){an}收敛的充要条件是0,N:n,mN|anam|;
2)(单调有界收敛原理)若{an}单调增上有界,则{an}收敛,且limansupan;若{an}单调减下有界,n
n
则{an}收敛,且limaninfan;
n
n
3)(致密性定理)有界数列必有收敛子列。4){an}收敛的充要条件是limsup(amak)0
nm.kn4、子列:n1n2,{ank}称为{an}的子列: 1){an}收敛的充要条件是{an}的任何子列都收敛;
2)liman存在lima2n,lima2n1都存在,且lima2nlima2n1;
n
n
n
n
n
3)limanA0,满足anA至多有限项,满足anA有无穷多项,称A为{an}的上极
n
限;limanB0,满足anB至多有限项,满足anA有无穷多项,称B为{an}的下极
n
限;liman存在limanliman。
n
n
n
(1)limanlimsupxk;limanlimsupxk;
n
nkn
n
nkn
(2)anbn(nn0)limanlimbnanbn;
n
n
n
n
(3)limanlim(an);
n
n
(4)n
anbnanbn)anlimbn
n
n
n
n
lim(anbn)limanlimbn
n
n
n
三、应用研究
11lnn,证明liman存在。
n2n
1n1dn111nxdx
b1ln,nln(1证:令n
nn2n12n1x1、设an1从而liman.
n
nd11x), an1an,bn1bn,nnn
ccxn,n1,2,,证明limxn存在并求其值。2、c[3,0),x1,xn1
n22
2c|c||c|2cxnc|c|2,xn|c|,xn10,证明:显然xn,x10。若xn0,则|xn|
224222
x2k1x2k1l
xi2k
121222
(x2kx2),xx(x2k1x2k22k22kk1)x2k1x2k1,x2k2x2k22,从而
k
cx2cx2cb2ca2nn
1maxkb,,由xl2n1i,x2n,n1,2,得a,b,1k22222222
从而ab
(ba2),(ab)(ab2)0,2
ca22
若ab20,由b,得a2a4c0,则c3,总之有ab1,即limxn1.n223、yn1yn(2yn),0y01,求证: limyn1。(武大00)
n
证明:若y0yn1,则1yn1yny0,f(x)x(2x)1(0x1),y0y1y0(2y0)1,从而limyn(a)存在,在yn1yn(2yn)取极限,得aa(2a),0y0a1,所以a1。
n
4、设a13,a23述极限。(武大99)证明:由an13
4,a3,,如果数列{an}收敛,计算其极限,并证明数列{an} 收敛于上
3333
11111,a2n1a2n14(),a2n2a2n4(),可归纳证得:ana2na2n2a2n1a2n
1n
n
n
n
a2n,liam3an5,a2n1a2n1,a2n2a2n,从而lim2n1都存在,令lima2na,lima2n1b,由
a2n13
1,aa2n
n2
23
1a2n,取极限得a3
11ab,b3,3a,b5,abab,baab
所以数列{an} 收敛,且liman4
n
5、设数列{an}有一子列{ank}收敛,且{ank}{a2n}及{ank}{a2n1}都有无穷个元,而{a2n}及{a2n1}都为单调数列,问{an}上否收敛?为什么?(武大98)证明:1)单调数列若有收敛子列,则本身收敛:
2)由1)知{a2n}及{a2n1}都收敛,又因为lima2nlimanklima2n1,故{an}收敛。
n
k
n
6、设an0,且an(武大97),证明数列{an}中存在一子序列{ank}是收敛的子序列。
7、设ana(n),令anmax{an,0},amax{a,0},证明an(武大96)a(n)。
8、设{an}无上界,证明存在子序列{ank},使得ank(k)。(武大95)9、设a0,x1
xn1n1,2,,证明极限limxn存在并求极限.(北大02)
n
xn2a,当x1a时,{xn}单调增;当x1a时,{xn}单调减,从而极限limxn存
n
在,令limxn
x,在xn1
n
x22xx2x1,xn2a得
limxn2。
n
a2n10、求极限lim.(北大01)
n1a2n
a2na2na2n1222n
a1(a)0lim0lim解:当a1时,0,;当时,;当a12n2n2nn1an1a1a
2a2n
1lim1。时,lim
n1a2nn1
12n
a
1f(a)11、设f(x)在点a右导,f(a)0,求极限lim.(北大01)n
f(a)
解:
12、a0).(北大98)
nn13、证明:(1)
11nn1n
(用ba[(n1)bna],ba0)(1)为递减数列:
n
1ln(1),n1,2(华东师大00)n1nn
(2)
14、设R中数列{an},{bn}满足an1bnqan,n1,2,其中0q1,证明:
(1)若{bn}有界,则{an}有界;
(2)若{bn}收敛,则{an}收敛。(清华01)
证明:(1)设|bn|M,|a1|M,由于an1bnqanbnqbn1qan1从而|an1|
n
1kn
(q)b(q)a1,nkk0
k0qkMqnM
n1
M。1q
(2)设limbnb,|an1
n
bn1
||k0(q)kbnk(q)na1k0(q)kb| 1q
|k0(q)k(bnkb)(q)n(a1b)||kn1(q)kb|
n1
|k0(q)(bnkb)||km1(q)(bnk
k
k
mn1
qn
b)(q)(a1b)||b|
1q
n
|knm(q)
n
nk
qmqn
(bkb)|2M|b|
1q1q
1。x1x15、(1)用语言证明:lim
(2)设函数f在点a可导,且f(a)0。求:
f(a)
n。lim
nf(a)
n
(3)求极限
1p2pnp
lim,其中p0。(清华00)
nn1p16、求极限lim[n(e1)](清华99)
n
1n
n17、设limana,证明 lim
n
a12a2nana
。(上海交大04)
nn2
2证明 由Stolz公式lim
a12a2nan(n1)an1a
lim。
nn(n1)2n2n2218、设xn1
3(1xn),(x10为已知)求limxn.(南京大学00)
n3xn
19、求limsin(。(浙大01)
n
20、试证:单调数列{xn}收敛到a的充要条件是存在子列{xnk}收敛到a。(武汉所00)
第三篇:数列极限存在的条件(经典课件)
§3 数列极限存在的条件
教学内容:单调有界定理,柯西收敛准则。
教学目的:使学生掌握判断数列极限存在的常用工具。掌握并会证明单调有界定理,并会运用它求某些收敛
数列的极限;初步理解Cauchy准则在极限理论中的主要意义,并逐步会应用Cauchy准则判断某些数列的敛散性。
教学重点:单调有界定理、Cauchy收敛准则及其应用。
教学难点:相关定理的应用。
教学方法:讲练结合。
教学学时:2学时。
引言
在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。
本节将重点讨论极限的存在性问题。为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。本节就来介绍两个判断数列收敛的方法。
一、单调数列:
定义 若数列an的各项满足不等式anan1(aan1),则称an为递增(递减)数列。递增和递减数列统称为单调数列. (1)n12例如:为递减数列;n为递增数列;不是单调数列。nn
二、单调有界定理:
考虑:单调数列一定收敛吗?有界数列一定收敛吗?以上两个问题答案都是否定的,如果数列对以上两个条件都满足呢?答案就成为肯定的了,即有如下定理:
定理2.9(单调有界定理)在实数系中,有界且单调数列必有极限。
证明:不妨设an单调递增有上界,由确界原理an有上确界asupan,下面证明limana.0,n
一方面,由上确界定义aNan,使得aaN,又由an的递增性得,当nN时aaNan; 另一方面,由于a是an的一个上界,故对一切an,都有anaa;
所以当nN时有aana,即ana,这就证得limana。n
同理可证单调递减有下界的数列必有极限,且为它的下确界。
例1 设an1111,n1,2,其中2,证明数列an收敛。23n
证明:显然数列an是单调递增的,以下证明它有上界.事实上,an1111 22223n
11111111111 1223(n1)n223n1n
212,n1,2, n
于是由单调有界定理便知数列an收敛。
例2 证明下列数列收敛,并求其极限:
n个根号
解:记an
显然a1222,易见数列an是单调递增的,现用数学归纳法证明an有上界2.22,假设an2,则有an12an222,从而数列an有上界2.n2于是由单调有界定理便知数列an收敛。以下再求其极限,设limana,对等式an12an两边
2同时取极限得a2a,解之得a2或a1(舍去,由数列极限保不等式性知此数列极限非负),从而 lim2222.n
例3证明lim(1)存在。n1nn
分析:此数列各项变化趋势如下
我们有理由猜测这个数列单调递增且有上界,下面证明这个猜测是正确的。
证明:先建立一个不等式,设ba0,nN,则由
bn1an1(ba)(bnbn1abn2a2ban1an)(n1)bn(ba)得到不等式 an1bn(n1)anb(*)
以b111111a代入(*)式,由于(n1)anb(n1)(1)n(1)1 nn1n1n
n1nn111由此可知数列1为递增数列; nn1于是1n1
再以b11111a代入(*)式,同样由于(n1)anb(n1)n(1),2n2n
2n2nn14由此可知数列1为有界数列; n111于是1112n22n
n综上由单调有界定理便知lim(1)存在。nn
n1注:数列1是收敛的,但它的极限目前没有办法求出,实际上它的极限是e(无理数),即有n
1lim(1)n=e,这是非常有用的结论,我们必须熟记,以后可以直接应用。nn
例4 求以下数列极限:
(1)lim(1);(2)lim(1nn1nn1n1);(3)lim(1)2n.n2nn
n1n1 解:(1)lim(1)lim1nnnn11; e
(2)lim(1n1n1)lim1n2n2n2ne 12
(3)lim(1n12n)n1nlim1e2.nn2
三、柯西收敛准则:
1.引言:
单调有界定理只是数列收敛的充分条件,下面给出在实数集中数列收敛的充分必要条件——柯西收敛准则。
2.Cauchy收敛准则:
定理2.10(Cauchy收敛准则)数列an收敛的充分必要条件是:对任给的0,存在正整数N,使得当n,mN时有|anam|;或对任给的0,存在正整数N,使得当nN,及任一pN,有anpan。
3.说明:
(1)Cauchy收敛准则从理论上完全解决了数列极限的存在性问题。
(2)Cauchy收敛准则的条件称为Cauchy条件,它反映这样的事实:收敛数列各项的值愈到后面,彼此愈接近,以至于充分后面的任何两项之差的绝对值可以小于预先给定的任意小正数。或者,形象地说,收敛数列的各项越到后面越是“挤”在一起。
(3)Cauchy准则把N定义中an与a的之差换成an与am之差。其好处在于无需借助数列以外的数a,只要根据数列本身的特征就可以鉴别其(收)敛(发)散性。
(4)数列an发散的充分必要条件是:存在00,对任意的NN,都可以找到n,mN,使得anam0;存在00,对任意的NN,都可以找到nN,及pN,使得anpan0.例5设an1112n,证明数列an收敛。101010
证明:不妨设nm,则
anam111m1m2n101010
1110m11nm11011111 mnm19101010mm110对任给的0,存在N
例6设an1
证明:0,对一切nmN有|anam|,由柯西收敛准则知数列an收敛。11,证明数列an发散。2n
anp1,对任意的NN,任取nN,及pn,则有 211111111an(共n项)n0 n1n22n2n2n2n2n2由柯西收敛准则知数列an发散。
第四篇:数列极限例题
三、数列的极限
(1)n1}当n时的变化趋势.观察数列{1n问题:
当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:
(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定
11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义
如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为
limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:
N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:
a2axN2x2x1xN1ax3x
当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证
注意到xn1 nn任给0, 若要xn1, 只要
11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn
重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;
n(1)n11”的详细推理
(2)逻辑“取 N[], 则当nN时, 就有
n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得
1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就
n是成立
n(1)n111.xn1=
nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证
任给0(要求ε<1)若q0, 则limqlim00;
nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n
说明:当作公式利用:limq
n1, q1,不存在,q1.
第五篇:数列极限教案
数列的极限教案
授课人:###
一、教材分析
极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。
二、教学重点和难点
教学重点:数列极限概念的理解及数列极限N语言的刻画。
教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。
三、教学目标
1、通过学习数列以及数列极限的概念,明白极限的思想。
2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。
四、授课过程
1、概念引入
例子一:(割圆术)刘徽的割圆术来计算圆的面积。
.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断
1接近圆的面积。
例子二:庄子曰“一尺之锤,日取其半,万世不竭”。
第一天的长度1第二天的剩余长度 第二天的剩余长度
第四天的剩余长度 8
.....第n天的剩余长度n1.......2
随着天数的增加,木杆剩余的长度越来越短,越来越接近0。
这里蕴含的就是极限的概念。
总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:
1111(1): 1,,......; 23nn
1n1111:1,,,......;(2)n2345
(3)n2:1,4,9,16,......;
(4)1:1,1,1,1,......,1,......; nn
我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)
(4)中的数列却没有这样的特征。
此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。
可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。
2、内容讲授
(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x
n的极限,或者说数列xn收敛且收敛于数a。
写作:limxna或xnan。
n
如果数列没有极限,就说数列是发散的。
注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。
(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n
若取1,则存在N1000,当nN时,xna。1000
数列极限的N语言:
limx
nna0,N,nNxna.数列极限的几何解释:
3、例题讲解
n211。例题1用数列极限的定义证明limnnn
n21证明:设xn,因为 nn
n21212xn1nnnnn
0,欲使xn,只要22即n,n
2我们取N1,当nN时,
n2122.nnNn
n21所以lim1.nnn
2注:N的取法不是唯一的,在此题中,也可取N10等。
例题2 设xnC(C为常数),证明limxnC。n
证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n
小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业