第一讲 数列极限(数学分析)(合集)

时间:2019-05-13 09:02:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第一讲 数列极限(数学分析)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第一讲 数列极限(数学分析)》。

第一篇:第一讲 数列极限(数学分析)

第一讲 数列极限

一、上、下确界

1、定义:

1)设SR,若MR:xS,xM,则称M是数集S的一个上界,这时称S上有界;若LR:xS,xL,则称L是数集S的一个下界,这时称S下有界;当S既有上界又有下界时就称S为有界数集。

2)设SR,若MR:xS,xM,且0,xS:xM,则称M是数集S的上确界,记MsupS;若LR:xS,xL,且0,xS:xL,则称L是数集S的下确界,记LinfS。

2、性质:

1)(确界原理)设SR,S,若S有上界,则S有上确界;若S有下界,则S有下确界。

2)当S无上界时,记supS;当S无下界时,记infS。

3)sup(AB)max{supA,supB};inf(AB)min{infA,infB}。

4)supSinf(S);infSsup(S)。

5)sup(AB)supAsupB;inf(AB)infAinfB。

6)sup(AB)supAinfB。(武大93)

7)设f(x),g(x)是D上的有界函数,则

inff(D)infg(D)inf{f(x)g(x)}supf(D)infg(D)xD

sup{f(x)g(x)}supf(D)supg(D)

xD3、应用研究

1)设{xn}为一个正无穷大数列,E为{xn}的一切项组成的数集,试证必存在自然数p,使得xpinfE。(武大94)

二、数列极限

1、定义:

1)limana0,NN():nN,|ana|,称{an}为收敛数列; n

2)limanM0,N:nN,anM,称{an}为数列; n

3)limanM0,N:nN,anM,称{an}为数列; n

4)limanM0,N:nN,|an|M,称{an}为数列;

n

5)liman0,称{an}为无穷小数列;

n

2、性质

1)唯一性:若limana,limanbab。

n

n

2)有界性:若{an}为收敛数列,则{an}为有界数列。3)保号性:limana0N,nN,an0.n

4)保不等式性:若limana,limbnb,anbn(nN0)ab.n

n

5)迫敛性:若ancnbn(nN0),limanlimbnclimcnc.n

n

n

6)四则运算:若limana,limbnb,则

n

n

lim(anbn)ab;lim(anbn)ab;lim

n

n

bnb

(a0)。

naan

xnxn1xxxn

1存在,则limnlimn。

nnynyn1ynynyn1

7)Stolz定理:设{yn}为严格增的数列,若lim

n

证明:(1)Sn明)

aaaana1a

2(用归纳法证,,nbk0,k1,2,,n,则minSn12maxSn。

b1b2bnb1b2bn

acaacc

,b0,d0a(bd)b(ac),(ac)d(bd)c,bdbbdd

minSn1minSn

an1a1anan1a1anan1

; 

bn1b1bnbn1b1bnbn1an1a1anan1a1anan1

。

bn1b1bnbn1b1bnbn1

maxSn1maxSn

(2)设lim

n

xnxn1xxxx

r0,k,nk:|nn1r|,由(1)得|nkr|,又

ynyn1ynyn12ynyk2

xk

y

rkyxx

nrk,又|因为ynyk

xnxrykyxxkx

rk(1knr),所以|nr|ynynynynykynlim

n

xkrykxrykx

0Nk,nN:|k|,从而|nr|(nN)

nynyn2yn3、极限存在条件:

1)(Cauchy收敛准则){an}收敛的充要条件是0,N:n,mN|anam|;

2)(单调有界收敛原理)若{an}单调增上有界,则{an}收敛,且limansupan;若{an}单调减下有界,n

n

则{an}收敛,且limaninfan;

n

n

3)(致密性定理)有界数列必有收敛子列。4){an}收敛的充要条件是limsup(amak)0

nm.kn4、子列:n1n2,{ank}称为{an}的子列: 1){an}收敛的充要条件是{an}的任何子列都收敛;

2)liman存在lima2n,lima2n1都存在,且lima2nlima2n1;

n

n

n

n

n

3)limanA0,满足anA至多有限项,满足anA有无穷多项,称A为{an}的上极

n

限;limanB0,满足anB至多有限项,满足anA有无穷多项,称B为{an}的下极

n

限;liman存在limanliman。

n

n

n

(1)limanlimsupxk;limanlimsupxk;

n

nkn

n

nkn

(2)anbn(nn0)limanlimbnanbn;

n

n

n

n

(3)limanlim(an);

n

n

(4)n

anbnanbn)anlimbn

n

n

n

n

lim(anbn)limanlimbn

n

n

n

三、应用研究

11lnn,证明liman存在。

n2n

1n1dn111nxdx

b1ln,nln(1证:令n

nn2n12n1x1、设an1从而liman.

n

nd11x), an1an,bn1bn,nnn

ccxn,n1,2,,证明limxn存在并求其值。2、c[3,0),x1,xn1

n22

2c|c||c|2cxnc|c|2,xn|c|,xn10,证明:显然xn,x10。若xn0,则|xn|

224222

x2k1x2k1l

xi2k

121222

(x2kx2),xx(x2k1x2k22k22kk1)x2k1x2k1,x2k2x2k22,从而

k

cx2cx2cb2ca2nn

1maxkb,,由xl2n1i,x2n,n1,2,得a,b,1k22222222

从而ab

(ba2),(ab)(ab2)0,2

ca22

若ab20,由b,得a2a4c0,则c3,总之有ab1,即limxn1.n223、yn1yn(2yn),0y01,求证: limyn1。(武大00)

n

证明:若y0yn1,则1yn1yny0,f(x)x(2x)1(0x1),y0y1y0(2y0)1,从而limyn(a)存在,在yn1yn(2yn)取极限,得aa(2a),0y0a1,所以a1。

n

4、设a13,a23述极限。(武大99)证明:由an13

4,a3,,如果数列{an}收敛,计算其极限,并证明数列{an} 收敛于上

3333

11111,a2n1a2n14(),a2n2a2n4(),可归纳证得:ana2na2n2a2n1a2n

1n

n

n

n

a2n,liam3an5,a2n1a2n1,a2n2a2n,从而lim2n1都存在,令lima2na,lima2n1b,由

a2n13

1,aa2n

n2

23

1a2n,取极限得a3

11ab,b3,3a,b5,abab,baab

所以数列{an} 收敛,且liman4

n

5、设数列{an}有一子列{ank}收敛,且{ank}{a2n}及{ank}{a2n1}都有无穷个元,而{a2n}及{a2n1}都为单调数列,问{an}上否收敛?为什么?(武大98)证明:1)单调数列若有收敛子列,则本身收敛:

2)由1)知{a2n}及{a2n1}都收敛,又因为lima2nlimanklima2n1,故{an}收敛。

n

k

n

6、设an0,且an(武大97),证明数列{an}中存在一子序列{ank}是收敛的子序列。

7、设ana(n),令anmax{an,0},amax{a,0},证明an(武大96)a(n)。

8、设{an}无上界,证明存在子序列{ank},使得ank(k)。(武大95)9、设a0,x1

xn1n1,2,,证明极限limxn存在并求极限.(北大02)

n

xn2a,当x1a时,{xn}单调增;当x1a时,{xn}单调减,从而极限limxn存

n

在,令limxn

x,在xn1

n

x22xx2x1,xn2a得

limxn2。

n

a2n10、求极限lim.(北大01)

n1a2n

a2na2na2n1222n

a1(a)0lim0lim解:当a1时,0,;当时,;当a12n2n2nn1an1a1a

2a2n

1lim1。时,lim

n1a2nn1

12n

a

1f(a)11、设f(x)在点a右导,f(a)0,求极限lim.(北大01)n

f(a)

解:

12、a0).(北大98)

nn13、证明:(1)

11nn1n

(用ba[(n1)bna],ba0)(1)为递减数列:

n

1ln(1),n1,2(华东师大00)n1nn

(2)

14、设R中数列{an},{bn}满足an1bnqan,n1,2,其中0q1,证明:

(1)若{bn}有界,则{an}有界;

(2)若{bn}收敛,则{an}收敛。(清华01)

证明:(1)设|bn|M,|a1|M,由于an1bnqanbnqbn1qan1从而|an1|

n

1kn

(q)b(q)a1,nkk0

k0qkMqnM

n1

M。1q

(2)设limbnb,|an1

n

bn1

||k0(q)kbnk(q)na1k0(q)kb| 1q

|k0(q)k(bnkb)(q)n(a1b)||kn1(q)kb|

n1

|k0(q)(bnkb)||km1(q)(bnk

k

k

mn1

qn

b)(q)(a1b)||b|

1q

n

|knm(q)

n

nk

qmqn

(bkb)|2M|b|

1q1q

1。x1x15、(1)用语言证明:lim

(2)设函数f在点a可导,且f(a)0。求:

f(a)

n。lim

nf(a)

n

(3)求极限

1p2pnp

lim,其中p0。(清华00)

nn1p16、求极限lim[n(e1)](清华99)

n

1n

n17、设limana,证明 lim

n

a12a2nana

。(上海交大04)

nn2

2证明 由Stolz公式lim

a12a2nan(n1)an1a

lim。

nn(n1)2n2n2218、设xn1

3(1xn),(x10为已知)求limxn.(南京大学00)

n3xn

19、求limsin(。(浙大01)

n

20、试证:单调数列{xn}收敛到a的充要条件是存在子列{xnk}收敛到a。(武汉所00)

第二篇:第一讲 数列的极限典型例题

第一讲

数列的极限

一、内容提要

1.数列极限的定义

limxna0,nN,nN,有xna.注1 的双重性.一方面,正数具有绝对的任意性,这样才能有

xn无限趋近于axna(nN)

另一方面,正数又具有相对的固定性,从而使不等式xna.还表明数列xn无限趋近于a的渐近过程的不同程度,进而能估算xn趋近于a的近似程度.注2 若limxn存在,则对于每一个正数,总存在一正整数N与之对应,但这种N不是n唯一的,若N满足定义中的要求,则取N1,N2,,作为定义中的新的一个N也必须满足极限定义中的要求,故若存在一个N则必存在无穷多个正整数可作为定义中的N. 注3 xna(n)的几何意义是:对a的预先给定的任意邻域U(a,),在xn中至多除去有限项,其余的无穷多项将全部进入U(a,). 注4 limxna00,nN,n0N,有xna0.02.子列的定义

在数列xn中,保持原来次序自左往右任意选取无穷多个项所得的数列称为xn的子列,记为xnk,其中nk表示xn在原数列中的项数,k表示它在子列中的项数.

k注1 对每一个k,有nkk.

注2 对任意两个正整数h,k,如果hk,则nhnk.反之,若nhnk,则hk. 注3 limxna0,nkK,kK,有xna.k注4 limxnaxn的任一子列xnnk收敛于a.3.数列有界

对数列xn,若M0,使得对nN,有xnM,则称数列xn为有界数列. 4.无穷大量

对数列xn,如果G0,N,作limxn.

nnN,有xnG,则称xn为无穷大量,记 1 注1 只是一个记号,不是确切的数.当xn为无穷大量时,数列xn是发散的,即limxnn不存在.

注2 若limxn,则xn无界,反之不真.

n注3 设xn与yn为同号无穷大量,则xnyn为无穷大量. 注4 设xn为无穷大量,yn有界,则xnyn为无穷大量.

注5 设xn为无穷大量,对数列yn,若0,有yn,N,使得对nN,则xnyn为无穷大量.特别的,若yna0,则xnyn为无穷大量. 5.无穷小量

若limxn0,则称xn为无穷小量.

n注1 若limxn0,yn有界,则limxnyn0.

nn注2 若limxn,则limn1xnnil若m0;

nxn0,且N,使得对nN,xn0,则lim1xnn.

6.收敛数列的性质

(1)若xn收敛,则xn必有界,反之不真.(2)若xn收敛,则极限必唯一.

(3)若limxna,limynb,且ab,则N,使得当nN时,有xnyn.

nn注

这条性质称为“保号性”,在理论分析论证中应用极普遍.

(4)若limxna,limynb,且N,使得当nN时,有xnyn,则ab.

nn注

这条性质在一些参考书中称为“保不等号(式)性”.

(5)若数列xn、yn皆收敛,则它们和、差、积、商所构成的数列xnyn,xnyn,xnyn,xnyn0)也收敛,且有 (limnynnyn,xnlim

limxnynlimnnxnynlimxnlimyn,limnnn 2

lim7.迫敛性(夹逼定理)

xnynlimxnnnlimynn(limyn0).

n若N,使得当nN时,有ynxnzn,且limynlimzna,则limxna.

nnn8.单调有界定理

单调递增有上界数列xn必收敛,单调递减有下界数列xn必收敛. 9.Cauchy收敛准则

数列xn收敛的充要条件是:0,N,n,mN,有xnxm.

注 Cauchy收敛准则是判断数列敛散性的重要理论依据.尽管没有提供计算极限的方法,但它的长处也在于此――在论证极限问题时不需要事先知道极限值. 10.Bolzano Weierstrass定理 有界数列必有收敛子列.

111.lim1e2.7182818284nnn

12.几个重要不等式

(1)ab2ab, sinx  1.sinx  x.(2)算术-几何-调和平均不等式:

 对a1,a2,,anR, 记 2 M(ai) a1a2annn 1niani1,(算术平均值)G(ai)nna1a2anai,(几何平均值)

i1

H(ai)n1a11a21an11nni11ainnai11i.(调和平均值)有均值不等式:

H(ai) G(ai) M(ai),等号当且仅当a1a2an时成立.(3)Bernoulli 不等式:

(在中学已用数学归纳法证明过)对x0, 由二项展开式(1x)1nxnnn(n1)2!x2n(n1)(n2)3!x3xn,(1x)1nx,(n1)

(4)Cauchy-Schwarz 不等式: ak,bk(k1,2,,n),有

nn

akbkakbkk1k122n2kn2kabk1k1

(5)nN,13.O.Stolz公式 1n1ln(11n)1n

二、典型例题 1.用“N”“GN”证明数列的极限.(必须掌握)例1 用定义证明下列各式:(1)lim3n5n13nn622n1;

(2)设xn0,limxna,则limnnxna;(97,北大,10分)

(3)limlnnnn0(0)

证明:(1)0,欲使不等式

3n5n13nn662216n53nn6626n3nn26nn26n

成立,只须n,于是,0,取N[]1,当nN时,有

3n5n13nn62

2216n

limn3n5n13nn621.

(2)由limxna,xn0,知0,nN,xnaanN,有xnaa,则

xnaxnaxna

于是,0,N,nN,有

xnaxnaa,即

lim(3)已知nlnn,因为

20lnnnnxna.

lnnn22lnn12n22n12n4

2[n2]n4nn24,n2

2所以,0,欲使不等式

lnnn0lnnn4n24成立,只须n.

24

于是,0,取N1,当nN时,有



lnnn0lnnn4,n20. 即

lim

lnnnn评注1 本例中,我们均将xna做了适当的变形,使得xnag(n),从而从解不等式g(n)中求出定义中的N.将xna放大时要注意两点:①g(n)应满足当n时,g(n)0.这是因为要使g(n),g(n)必须能够任意小;②不等式g(n)容易求解.

评注2 用定义证明xna(n),对0,只要找到一个自然数N(),使得当nN()时,有xna即可.关键证明N()的存在性.

评注3 在第二小题中,用到了数列极限定义的等价命题,即:(1)0,(2)0,N,N,nN,有xnaM(M为任一正常数).nN,有xnak(kN).例2 用定义证明下列各式:(1)limnnn1;(92,南开,10分)

kn(2)limnna0(a1,kN)

nn证明:(1)(方法一)由于n1(n1),可令n1(0),则

nnnn(1)n1nn2n(n1)22nn(n1)22(n2)

当n2时,n1,有

n2

n n(n1)2242n24(nn1)

2即

0nn12nn.

0,欲使不等式n1nn12n成立,只须n42.

于是,0,取Nmax21,2,当nN时,有

n4n12n,即

limnnn1.

(方法二)因为 1nn(nn2个1n111)nnn11n2nn2n12n,所以

nn12n,0,欲使不等式

nn1nn12n成立,只须n42.

于是,0,取N21,当nN时,有

n4n12n,即

limnnn1.

(2)当k1时,由于a1,可记a1(0),则

an(1)n1nn(n1)22nn(n1)22(n2)

当n2时,n1

0nann2,于是有

nn(n1)24n2.

2

0,欲使不等式

nan0 nan4n2成立,只须n42.

对0,取Nmax21,2,当nN时,有



nan40 nan4n2.

1当k1时,ak1(a1),而

naknn1kn(a). n1k则由以上证明知0,N,nN,有0,即

n(ak)

0naknkn,k故

limnna0.

评注1 在本例中,0,要从不等式xna中解得N非常困难.根据xn的特征,利用二项式定理展开较容易.要注意,在这两个小题中,一个是变量,一个是定值.

评注2 从第一小题的方法二可看出算术-几何平均不等式的妙处. 评注3 第二小题的证明用了从特殊到一般的证法. 例 用定义证明:limannn!(山东大学)0(a0)证明:当0a1时,结论显然成立.

aaaaaaa0成立,当a1时,欲使

aa1a!nn!12nanaaa1只须n.于是0,取N1,当nN时,有 a!a!aa1ann!0aaa!an

a即

lim0.

nn!n例 设1,用“N”语言,证明:lim[(n1)n]0.

n证明:当0时,结论恒成立. 当01时,0,欲使(n1)n0n[(11n)1]n(11n1)1n1

只须n1111.于是0,取N111,当nN时,有 1n1(n1)n0

lim[(n1)n]0.

n2.迫敛性(夹逼定理)

n项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理.

ynxnzn,ynb,znc{xn}有界,但不能说明xn有极限.使用夹逼定理时,要求yn,zn趋于同一个数.

an例

求证:limnn!. 0(a为常数)分析:ann!aaaaaa,因a为固定常数,必存在正整数m,使123mm1nam1mam1,因此,自开始,am11,am21,,an1,且n时,an0.

证明:对于固定的a,必存在正整数m,使am1,当nm1时,有

an0mn!a1a2a3amanam1anamm!an,由于limanm!an0,由夹逼定理得limnn!0,即

limnann!0.

评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果.

例 若{an}是正数数列,且lima12a2nannn0,则

limnnna1an0.

证明:由n1a12a2nana12a2nann,知

nn!na1a2ana12a2nann1n

即 na1a2ana12a2nann1n.

n!于是,0nna1a2ana12a2nann,而由已知

n!lima12a2nannn0及lim1nnn!0

limna12a2nann1nn!0

由夹逼定理得

limnnna1an0.

评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各变量的极限存在,且在商的运算中,分母极限不为0. 评注2 对一些基本结果能够熟练和灵活应用.例如:(1)limqnn0(q1)

(2)lim1nnan0(a0)

(3)limnna1(a0)

(4)limnnn1

(5)limann!0(a0)

(6)lim1nnn!0

例 证明:若limxna(a有限或),则

nlimx1x2xnnna(a有限或).

证明:(1)设a为有限,因为limxna,则0,nN1,有xnanN1,2.9 于是x1x2xnnax1ax2axnan

x1ax2axN1anAnnN1nxN11axnan

An2.

其中Ax1ax2axNa为非负数.

1因为limnAn0,故对上述的0,N2,nN2,有

An2.

取Nmax{N1,N2}当nN时,有

x1x2xnna22

limx1x2xnnna.

nN1,有xn2G,(2)设a,因为limxn,则G0,nN1,且x1x2xN0.于是 x1x2xnn

x1x2xN1nxN11xnn

xN11xnn

2G(nN1)n2G2N1nG

取N2N1,当nN时,2N1nGG,于是

x1x2xnn2GGG.

limx1x2xnnn

(3)a时证法与(2)类似.

评注1 这一结论也称Cauchy第一定理,是一个有用的结果,应用它可计算一些极限,例如:

112n1n0(已知limn(1)lim1nnn0);

(2)lim1233nnn1(已知limnnn1).

评注2 此结论是充分的,而非必要的,但若条件加强为“{xn}为单调数列”,则由x1x2xnnlimna可推出limxna.

n评注3 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如:

若01,limana(a为有限数),证明:

nlim(anan1an2a0)n2n分析:令xnanan1an2a0,则

2na1.

(1)xnan(an1an)(an2an1)(a0a1)2nn1a0.

2n只须证

(an1an)(an2an1)(a0a1)0(n)

由于limana,故N,nnN,有anan1.于是

2n(an1an)(an2an1)(a0a1)

an1anan2an12NanN1anNN1anNanN1a0a1nn再利用lim0(01)即得.

n例 求下列各式的极限:(1)lim(n1nn122nn22nnnn2)

(2)limnn1121n

(3)limn135(2n1)2462n2n

2nn22解:(1)12nnnn1nn12nnnn212nnn12

n(n1)∵lim12,22nnnnn2nnnn(n1)12n12limlim,2nnn2n1nn12由夹逼定理,12nlim∴lim(n1nn1n22nn22nnnnn2)12

(2)1∵limnn1121nn111n

n1,由夹逼定理,∴limnn11121n1.

(3)∵1n2n352n11135(2n1)132n11,242n22n2462n242n∴2nnn135(2n1)2462n1.

∵lim12nnnn1,由夹逼定理,∴limn135(2n1)2462n2n12nn1.

评注 的极限是1,用此法体现了“1”的好处,可以放前,也可放后.若极限不是1,则不能用此法,例如:

xn23(n1)35(2n1),求limxn.

n解:∵xn0,xn单调递减,xn单调递减有下界,故其极限存在. 令limxna,∵xn1xnnn2∴limxn1limxnlimnn2n3n2

12a,n2n3,a∴a0,xn0. 即

limn 12 lim(1n112112n)(中科院)

评注 拆项:分母是两项的积,1n(n1)1n1n1

nn1n11n11n插项:分子、分母相差一个常数时总可以插项.3单调有界必有极限 常用方法:①xn1xn;②

xn1xn1

;③归纳法;④导数法.

xn1f(xn)

f(x)0

f(x)单调递增

x2xf(x2)f(x1)

x3x2 x2x1

f(x2)f(x1)

x3x2

f(x)0

f(x)单调递减

x2x1

f(x2)f(x1)

x3x2

x2x1

f(x2)f(x1)

x3x2不解决决问题.

命题:xn1f(xn),若f(x)单调递增,且x2x1(x2x1),则xn单调递增(单调递减).

求下列数列极限:

(1)设A0,x10,xn112(xnAxn(98,华中科大,10分));(2)设x10,xn133xn3xn;(04,武大)

(3)设x0a,x1b,xn12xn1xn22Axn12(n2,3,).(2000,浙大)

解:(1)首先注意xn1另一方面,因为

(xn)2xnAxnA,所以xn为有下界数列.

xn1xn12(xnAxn)xn12xn(Axn)0.

1A(或

xn1xn12(1Ax2n)A221)

故xn为单调递减数列.因而limxn存在,且记为a.

n

由极限的四则运算,在xn112Aa).并注意到xn12(xnAxn)两端同时取极限n,得a(aA0,解得a3(1xn)3xnA.

(2)注意到0xn1另一方面,由

33xn3xn3,于是xn为有界数列.

xn1xn33xn3xnxn3xn23xn33xn133xn133xn133xn122(3xn1)(3xn1)(42xn1)2

3xn1(3xn1)(2xn1)22

3xn1知xn1xnxnxn1(3xn1)(2xn1)3xn13xn1212xn10.

即xn1xn与xnxn1保持同号,因此xn为单调数列,所以limxn存在(记为a).

n

由极限的四则运算,在xn133xn3xn两端同时取极限n,得a33a3a.并注意到0xn3,解得a(3)由于xn1xn3.

xnxn12xnxnxn12x2x1(2)n1x1x0(2)1nba(2)n, n1n1又xnm0(xm1xm)x0xn(ba)1m1(a(ba)1(m0(2)21)na,)2 14

1(1所以

limxn(ba)limnn1(21)na)2(ba)3a2ba3.

2评注1 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性.在说明递归数列单调性时,可用函数的单调性.下面给出一个重要的结论:设xn1f(xn)(n1,2,)xnI,若f(x)在区间I上单调递增,且x2x1(或x2x1),则数列xn单调递增(或单调递减).

评注2 第三小题的方法较为典型,根据所给的xn1,xn,xn1之间的关系,得到xn1xn与xnxn1的等式,再利用错位相减的思想,将数列通项xn写成级数的表达式.

例 设a1,b1为任意正数,且a1b1,设an则an,bn收敛,且极限相同. 证明:由an2an1bn1an1bn12an1bn12an1bn12an1bn1an1bn1,bn,an1bn1(n2,3,)

an1bn1bn,知

bnan1bn1bn1bn1bn1.

则0bnb1,即bn为单调有界数列.

又0anbnb1,且 anan12an1bn1an1bn1an12an1bn1an1an1bn1an1bn12an1(bn1an1)an1bn10,所以an亦为单调有界数列.

由单调有界必有极限定理,liman与limbn存在,且分别记为a与b.在nnan2an1bn1an1bn1与bnan1bn1两端同时取极限n,得a2abab与bab.

考虑到a1,b1为任意正数且0a1anbnb1. 即得ab0. 例(1)设x12,xn121xn,求limxn;

n 15(2)设x10,x22,且3xn1xn2xn10(n2,3,),求limxn.

n解:(1)假设limxn存在且等于a,由极限的四则运算,在xn12n1xn两端同时取极限n,得a21a,即a12.

2.又xn2,故a1下面只须验证数列xna趋于零(n).由于

xna11112a2xax1a,nxnaxna44n0xn1n1而limx1a0,由夹逼定理得limxna1nn42.

(2)由3xn1xn2xn10,知

3xn12xn3xn2xn13xn12xn23x22x16,则

xn123xn2.

65假设limxn存在且等于a,由极限的四则运算,得an.

下面只须验证数列xn6523n16.由于 趋于零(n)

5n1xnxn12622xn13553662x153n165.

2显然limn3650,由夹逼定理得limxnn65.

评注1 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有极限定理时,可以先假设limxna,由递归方程求出a,然后设法证明数列xna趋于

n零.

评注2 对数列xn,若满足xnakxn1a(n2,3,),其中0k1,则必有limxna.这一结论在验证极限存在或求解递归数列的极限时非常有用.

n评注3 本例的第二小题还可用Cauchy收敛原理验证它们极限的存在性.

设a1>0,an1=an+

(1)要证lim21an,证明limnan2n=1(04,上海交大)

an2an2n2n=1,只要证lim2n2n1,即只要证liman1ann(2n2)2n1an1,即证lim(an1an)2

2n(2)因an1=an+a2n12n,故an1an1an0,an1an11a2n

a(an1an)(an1an)1a2nan1anan11a2n121a2n因此只要证limn0,即只要证limann

(3)由an1an1an0知,{an}单调增加,假如{an}有上界,则{an}1an必有极限a,由an1=an+

知,a=a+,因此0,矛盾.aa11这表明{an}单调增加、没有上界,因此liman.(证完)

n

4 利用序列的Cauchy收敛准则 例(1)设x1x2(0x1),xnx2xn122,求limxn;

n(2)设x1y11,xn1xn2yn,yn1xnyn,求limx2122xnyn2n;

14解:(1)由x1(0x1),得x1x2.假设xk12212,则xk.有

xk1xk212xxk12

由归纳法可得

xn于是

xnpxnx2xnp122.

2xxn1 22 17

xnp1xn1xnp1xn1212n112xnp1xn1

xp1x112n1. 0(n)

x2xn122由Cauchy收敛准则知:limxn存在并记为a,由极限的四则运算,在xnn两端同时取极限n,得a22ax0. 注意到xn(2)设an12,故limxna11x.

nxnyn,显然an1.xn2ynxnyn11an由于an1xn1yn11,则

an1an11an11an1

anan11an1an114anan114n1a2a1.于是anpananpanp1anp1anp2an1an

anpanp1anp1anp2an1an

11

41np2p114aa aa2211n1n114414

14n113a2a10(n).由Cauchy收敛准则知:limxn存在并记为a.n由极限的四则运算,在an11xnyn11an2两端同时取极限n,得a2.

注意到an1,故limnlimann2.

评注1 Cauchy收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性.本例两小题都运用了Cauchy收敛准则,但细 18 节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列xn有界,因此有xp1x1xp1x11.保证了定义中的N仅与有关.评注2 “对pN有limxnpxn0”这种说法与Cauchy收敛准则并不一致.这里

n要求对每个固定的p,可找到既与又与p的关的N,当nN,有xnpxn.而Cauchy收敛准则要求所找到的N只能与任意的有关.

5 利用Stolz定理计算数列极限

例 求下列极限

1323n3n (1)lim3n4n

lim(2)假设limana,证明:na12a2...nann2na2(00,大连理工,10)(04,上海交大)

证明:Stolz公式 lima12a2...nann2nlim(a12a2...nan(n1)an1)(a12a2...nan)(n1)n22nlim(n1)an12n111232

na21n n1nlnn(3)limn2n(4)lim

n(5)limna2n(a1)

n6 关于否定命题的证明(书上一些典型例题需背)

limxna

nxn发散

证明:xn112131nan1an发散.

例 设an0(n1,2,),且liman0,若存在极限limnn(北大,l,则l1.20)

7 杂例(1)lim1121231n(n1)

n

(2)(04,武大)lim(n1a2a2...nan),(a1)1n 1()1naalim()n2n1a1a(a1)1a

22n(3)lim(1x)(1x)(1x)(x1);n

2(4)设a13,an1anan(n1,2,),求:

111llimn1a1a21an1. 

第三篇:abltch《数学分析》9数列极限存在的条件

-+

懒惰是很奇怪的东西,它使你以为那是安逸,是休息,是福气;但实际上它所给你的是无聊,是倦怠,是消沉;它剥夺你对前途的希望,割断你和别人之间的友情,使你心胸日渐狭窄,对人生也越来越怀疑。

—罗兰

§3 数列极限存在的条件

教学目的:使学生掌握判断数列极限存在的常用工具。

教学要求:(1)掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;(2)初步理解Cauchy

准则在极限理论中的主要意义,并逐步会应用Cauchy准则判断某些数列的敛散性。

教学重点:单调有界定理、Cauchy收敛准则及其应用。

教学难点:相关定理的应用。

教学方法:讲练结合。

教学程序:

 引言

在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。在实际应用中,解决了数列an极限的存在性问题之后,即使极限值的计算较为困难,但由于当n充分大时,an能充分接近

其极限a,故可用an作为a的近似值。

本节将重点讨论极限的存在性问题。

为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。

从收敛数列的有界性可知:若an收敛,则an为有界数列;但反之不一定对,即an有界不足以保

证an收敛。例如(1)n。但直观看来,若an有界,又an随n的增大(减少)而增大(减少),它就

有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛)。

为了说明这一点,先给出具有上述特征的数列一个名称——单调数列。

一、单调数列

定义若数列an的各项满足不等式anan1(aan1),则称an为递增(递减)数列。递增和递

减数列统称为单调数列. (1)n12例如:为递减数列;n为递增数列;不是单调数列。nn

二、单调有界定理

〔问题〕(1)单调数列一定收敛吗?;(2)收敛数列一定单调吗?

一个数列an,如果仅是单调的或有界的,不足以保证其收敛,但若既单调又有界,就可以了。此

即下面的极限存在的判断方法。

定理(单调有界定理)在实数系中,有界且单调数列必有极限。

三、应用

2例1 设an1131n,n1,2,其中2,证明数列an收敛。

例2 证明下列数列收敛,并求其极限:

 n个根号

例3.证明lim(n存在。)n1n

四、柯西收敛准则

1.引言

单调有界定理只是数列收敛的充分条件,下面给出在实数集中数列收敛的充分必要条件——柯西收敛准则。

2.Cauchy收敛准则:

定理(Cauchy收敛准则)数列an收敛的充分必要条件是:对任给的0,存在正整数N,使

得当n,mN时有|anam|。

3.说明

(1)Cauchy收敛准则从理论上完全解决了数列极限的存在性问题。

(2)Cauchy收敛准则的条件称为Cauchy条件,它反映这样的事实:收敛数列各项的值愈到后面,彼此愈接近,以至于充分后面的任何两项之差的绝对值可以小于预先给定的任意小正数。或者,形象地说,收敛数列的各项越到后面越是“挤”在一起。

(3)Cauchy准则把N定义中an与a的之差换成an与am之差。其好处在于无需借助数列以外的数a,只要根据数列本身的特征就可以鉴别其(收)敛(发)散性。

4.应用

例证明an1101

1021收敛。n10

例证明an1121发散。n

第四篇:第2讲数列极限及其性质2009

《数学分析I》第2讲教案

第2讲数列极限概念及其性质

讲授内容

一、数列极限概念

数列 a1,a2,,an,,或简单地记为{an},其中an,称为该数列的通项.

关于数列极限,先举二个我国古代有关数列的例子.(1)割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽.n

22园内接正n边形的面积An

Rsin

2n

sin

(n3,4,),当n时,AnR

2nn

R

2

(2)古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去.第一天截下

12,第二天截下

n

2,„„,第n天截下

n,„„这样就得到一个数列

22,2,,1,.或n.n22

不难看出,数列{}的通项

n

随着n的无限增大而无限地接近于0.一般地说,对于数列{an},若当n无

限增大时an能无限地接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限.不具有这种特性的数列就不是收敛数列.下面我们给出收敛数列及其极限的精确定义.

定义1设{an}为数列,a为定数.若对任给的正数,总存在正整数N,使得当,n>N时有|ana|则称数列{an收敛于a,定数a称为数列{an}的极限,并记作limana,或ana(n).读作“当n

n

趋于无穷大时,an的极限等于a或an趋于a”.

若数列{an}没有极限,则称{an}为发散数列.下面举例说明如何根据N定义来验证数列极限.

二、根据N定义来验证数列极限

例2证明lim

1n

n

0,这里为正数

,故对任给的>0,只要取N=

1

1,则当nN时,便有 

证:由于 |

1n

0|

1n

1n

1N

即|

1n

0|.这就证明了lim

1n

n

0.例3证明lim

3n

n

n33n

3.分析由于|

n

33|

9n3

9n

(n3).因此,对任给的>o,只要

9n

,便有

|

3n

n3

3|,即当n

时,(2)式成立.故应取Nmax{3, 

999

证任给0,取Nmax{3,据分析,当nN时有|23|,式成立.于是本题得证.n3

n

例4证明limq=0,这里|q|<1.

n

3n

证若q=0,则结果是显然的.现设0<|q|<1.记h

1|q|

1,则h>0.我们有

|q0||q|

11nh

nn

1(1h)

n,并由(1h)1+nh得到|q|

|q0|,这就证明了limq

n

n

nn

1nh

.对任给的0,只要取N

h,则当nN时,得

n

0.注:本例还可利用对数函数ylgx的严格增性来证明,简述如下:对任给的>0(不妨设<1),为使

n

n

只要nlg|q|lg即n|q0||q|,lglg|q|

(这里0|q|1).于是,只要取N

lglg|q|

即可。

例5证明lim

n

n

a1,其中a>0.

证:(ⅰ)当a1时,结论显然成立.(ⅱ)当a1时,记an1,则0.由 a(1)n1n1n(an1)得

an1

a1n.(1)

任给0,由(1)式可见,当n

a1

N时,就有an1,即|an1|.所以lim

n

a1.(ⅲ)当0a1时,,1

n

-1,则0.由

a

1

1n

(1)1n1n1得 aa1

1a

n

a

1n.a

a

1

1

n.1

(2)

任给0,由(2式可见,当n1

a1

N时,就有1an,即|an1|.所以lim

n

n

a1.关于数列极限的—N定义,应着重注意下面几点:

1.的任意性:尽管有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N,又既

2时任意小的正数,那么,3或等等同样也是任意小的正数,因此定义1中不等式|ana|中的可用

,3或等来代替.

2.N的相应性:一般说,N随的变小而变大,由此常把N写作N(),来强调N是依赖于的;但这并不意味着N是由所唯一确定的.3.从几何意义上看,“当n>N时有|aa|”意味着:所有下标大于N的项an都落在邻域U(a;)内;而在U(a;)之外,数列{an}中的项至多只有N个(有限个).

定义2若liman0,则称{an}为无穷小数列.由无穷小数列的定义,不难证明如下命题:

n

n

定理2.1数列{an}收敛于a的充要条件是:{ana}为无穷小数列.

三、收敛数列的性质

定理2.2(唯一性)若数列{an}收敛,则它只有一个极限.

定理2.3(有界性)若数列{an}收敛,则{an}为有界数列,即存在正数M,使得对一切正整数有|an|M.证:设limana取1,存在正数N,对一切n>N有

n

|ana|1即a1ana1.记Mmax{|a1|,|a2|,|aN|,|a1|,|a1|},则对一切正整数n都有anM.注:有界性只是数列收敛的必要条件,而非充分条件.例如数列1定理2.4(保号性)若limana0

n

n

有界,但它并不收敛.

(a,0

(或<0),则对任何a(0,a)(或a,存在正数N,使

得当nN时有ana(或ana).

证:设a0.取aa(>0),则存在正数N,使得当nN时有aana,即

anaa,这就证得结果.对于a0的情形,也可类似地证明.

注:在应用保号性时,经常取a

a2

.即有an

a2,或an

a2

定理2.5(保不等式性)设an与bn均为收敛数列.若存在正数N0,使得当nN0时,有anbn,则limanlimbn.n

n

请学生思考:如果把定理2.5中的条件anbn换成严格不等式anbn,那么能否把结论换成limanlimbn?,并给出理由.n

n

例1设an0n1,2,.证明:若limana,则lim

n

n

an

a.证:由定理2.5可得a0.若a0,则由liman0,任给0,存在正数N,使得当nN时有an,从而an即

n

an0,故有lim

n

an0.anaan

a

ana

a

若a0,则有

an

a

.任给0,由limana,存在正数N,使得当

n

nN时有ana

a,从而

an

a.故得证.

第五篇:数列极限例题

三、数列的极限

(1)n1}当n时的变化趋势.观察数列{1n问题:

当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:

(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定

11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义

如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为

limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:

N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:

a2axN2x2x1xN1ax3x

当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证

注意到xn1 nn任给0, 若要xn1, 只要

11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn

重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;

n(1)n11”的详细推理

(2)逻辑“取 N[], 则当nN时, 就有

n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得

1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就

n是成立

n(1)n111.xn1=

nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证

任给0(要求ε<1)若q0, 则limqlim00;

nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n

说明:当作公式利用:limq

n1, q1,不存在,q1.

下载第一讲 数列极限(数学分析)(合集)word格式文档
下载第一讲 数列极限(数学分析)(合集).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列极限教案

    数列的极限教案授课人:###一、教材分析极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。二、教学重点和难点教学重点:数列极限概念......

    数列极限复习

    数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范......

    数列极限的证明(★)

    例1 设数列xn满足0x1,xn1sinxnn1,2,。 (Ⅰ)证明limxn存在,并求该极限;nxn1xn(Ⅱ)计算lim。 nxn解 (Ⅰ)用归纳法证明xn单调下降且有下界, 由0x1,得0x2sinx1x1,设0xn,则0xn1sinxnxn,所以xn......

    数列、极限、数学归纳法·数学归纳法

    数列、极限、数学归纳法·数学归纳法·教案 教学目标 1.了解归纳法的意义,培养学生观察、归纳、发现的能力. 2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作......

    数列、极限、数学归纳法专题

    数列专 题复习选题人:董越【考点梳理】 一、考试内容 1.数列,等差数列及其通项公式,等差数列前n项和公式。 2.等比数列及其通项公式,等比数列前n项和公式。 3.数列的极限及其四......

    作业2数列极限

    作业2数列极限1、用数列极限的N定义证明下列极限:4n241)lim2nnn证明:04n2442 nnn14n2取N1,当nN时,恒有24 nn44n24所以lim2nnn2)limnn1n0 证明:0n1n011n1n1n取N2,当nN时,恒有n1n0所以l......

    数列极限的证明

    例1 设数列xn满足0x1,xn1sinxnn1,2,。 (Ⅰ)证明limxn存在,并求该极限; n1xn1xn2(Ⅱ)计算lim。 nxn解 (Ⅰ)用归纳法证明xn单调下降且有下界, 由0x1,得 0x2sinx1x1, 设0xn,则 0xn1sinxnxn,......

    数列极限的证明

    数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|......