第一篇:高数竞赛练习题答案(函数、极限、连续)
函数、极限、连续
1.f(x),g(x)C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)g(a),f(b)g(b),证明:(1)(a,b),使f()g()
(2)(a,b),使f()g()证明:设f(x),g(x)分别在xc,xd处取得最大值M,不妨设cd(此时acdb),作辅助函数F(x)f(x)g(x),往证(a,b),使F()0
令F(x)f(x)g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)F(b)0,① 当cd,由于 F(c)f(c)g(c)Mg(c)0F(d)f(d)g(d)f(d)M0由“闭.连.”零点定理,[c,d](a,b),使f()g()② 当cd,由于F(c)f(c)g(c)f(c)g(d)MM0即(a,b),使f()g()
对F(x)分别在[a,],[,b]上用罗尔定理,1(a,),2(,b),使
在[1,2]上对F(x)在用罗尔定理,F(1)F(2)0,(1,2)(a,b),使F()0,(a,b),使f()g().2.设数列{xn}满足0x1,xn1sinxn,n1,2,
xn存在,并求该极限(1)证明limn
xn1x1n(2)计算lim()nxn
分析:(1)确定{xn}为单调减少有下界即可
1xn,用洛必达法则.(2)利用(1)确定的limn
解:易得0xn1(n2,3,),所以xn1sinxnxn,n(2,3,),即{xn}为
xn存在,并记为limxna,则a[0,1],单调减少有下界的数列,所以 lim nn
对等式xn1sinxnxn,两边令n取极限,得asina,a[0,1],所以
a0,即limxn0.n
lim((2)n
xn1sinxn)lim()
nxnxn
2xn
2xn
令txn
lim(t0
sint)et0t
tlim
ln()t
t
2由于
lim
t0
t
ln(sin)ttsint
ln[1(sin1)]1-1t2sintt洛cost11tt2
limlimlimlimlim t0t0t0t0t03t2t2t2t33t26
xn1xn1
所以lim()e.nxn
3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)0,f(1)1,证明:(1)(0,1),使f()1,(2)存在两个不同点,(0,1),使f()f()1
证:(1)令F(x)f(x)x1,则F(x)在[0,1]上连续,且
F(0)10,F(1)10,由“闭.连.”零点定理,(0,1),使F()0,即f()1
(2)f(x)在[0,],[,1]上都满足拉格朗日中值定理,所以
(0,),(,1),使
f()f(0)f()(0),f(1)f()f()(1),即
f()f()
f()
1
1f()1(1)
111
f()f()
1
1
1
4.设方程xnnx10,其中n为正整数,证明此方程存在唯一的正
实根xn,并证明当1时,级数xn收敛.n1
证:令f(x)xnnx1,则f(x)在(0,)上连续,且
f(0)10,f()()n0
nn
所以由连续函数的零点定理,所给方程在(0,)内有根,又由f(x)n(xn11)0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,)上无根,即所给方程存在唯一的正实根xn.
由上述知,对n1,2,,有0xn,有0xn
1n
1n1n
1n
1n1,n
此外,由1知,级数
收敛,所以由正项级数比较审敛法,知
n1n
x收敛.nn1
5.求lim(cosx)
x0
1ln(1x)
x0ln(1x)
解:lim(cosx)
x0
1ln(1x)
=e
lim
lncosx,其中limln(1x
x0
lncosx)
lim
x0
ln[1(cosx1)]ln(1x)
lim
x0
x22x
(cosx)所以,limx0
ln(1x)
e
6.f(x)在x0的某邻域内具有一阶连续导数,且f(0)0,f(0)0,若
af(h)bf(2h)f(0)在h0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)
0lim
af(h)bf(2h)f(0)af(h)af(0)af(0)bf(2h)bf(0)bf(0)f(0)
lim
h0h0hhaf(h)af(0)bf(2h)bf(0)[(ab)1]f(0)[(ab)1]f(0)limlimlim(ab)f(0)limh0h0h0h0hhhh
ab1
由f(0)0,f(0)0,得,即a2,b1
a2b0
解2:按解1,只要假定f(x)在x0处可导即可,但在题中“f(x)在x0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim
h0
h0
af(h)bf(2h)f(0)
0得 limaf(h)bf(2h)f(0)=0
h0h
即0limaf(h)bf(2h)f(0)(ab1)f(0),由f(0)0,得ab1(1)
af(h)bf(2h)f(0)洛
limaf(h)2bf(2h)(a2b)f(0)且f(0)0,又由0lim
h0h0h
所以 a2b0(2)
由(1)、(2)得a2,b1.2esinx
.7.求lim4x0x1e
解:
2eesinx2esinx
1 limlim44x0x0xx1ee12esinx2esinx
1 limlim44x0xx01ex1e
所以 原式 = 1
8.求lim
x0
143
xx2
.2
x
解1:(泰勒公式)因
xx2[1
1111
xx2o(x2)][1xx2o(x2)]22828(x0)
x2o(x2)~x2
所以
1x2
xx21limlimx0x0x2x24
解2:(洛必达法则)
xx2洛必达limlimx0x0x22x1xx1
limlim x0xx4x0x
12x1lim.4x0x(xx)4
第二篇:高数课件-函数极限和连续
一、函数极限和连续自测题
1,是非题
(1)无界变量不一定是无穷大量
()(2)若limf(x)a,则f(x)在x0处必有定义
()
xx012x(3)极限lim2sinxlimx0
()
xx33x2,选择题
(1)当x0时,无穷小量1x1x是x的()A.等价无穷小
B.同阶但不等价
C.高阶无穷小
D.低价无穷小
x11x0(2)设函数f(x),则x0是f(x)的()x0x0A.可去间断点 B.无穷间断点
C 连续点
D 跳跃间断点
exx0(3)设函数f(x),要使f(x)在x0处连续,则a
()axx0A.2
B 1
C 0
D 1
3n25n1
()(4)lim2n6n3n2A 151
B
C
D 2321xsinx0x(5)设f(x),则在x0处f(x)
()
1sinx1x0xA 有定义
B 有极限
C 连续
D左连续
3(6)x1是函数yx1的()x1A 可去间断点
B 无穷间断点
C 连续
D跳跃间断点
3.求下列极限
(1)limxxsinxsin(2x)x23
(2)lim
(3)lim
x0x12xln(12x)x1e2x1(4)lim
(5)limn[ln(1n)lnn]
(6)lim(sinn1sinn)
nnx0x2x3x2(sinx3)tanx2lim()(7)lim
(8)
(9)limx(x1x)x2x1x01cosx2xcosxcosaarctanxexex0(10)lim
(11)lim
(12)lim
xaxxx0xxxax0x232x21sin(x1))(13)lim
(14)lim(2
xx1x1x24,求满足下列条件的a,b的值
1x2xab
(2)lim(3xax2x1)(1)limxx26x2tanaxx0axb2
(4)已知f(x)x(3)lim且limf(x)存在
x0x1x2x2x0x122(5)已知f(x)xaxb1x1在(,)内连续
2x1sin2xe2ax1x0(6)函数f(x)在x0点连续 xax05.求下列函数的间断点并判断其类型
x1x11cosxx21(1)y2
(2)y
(3)f(x)
sinxx3x23xx11x0x(4)f(x)ex1
(5)y
tanxln(1x)1x026.已知x1时,xax5x1是同阶无穷小,求a
7.证明方程x4x20在区间(1,2)内至少有一个根 8.当x0时,eln(1x)1与x是同阶无穷小,求n 9.设函数f(x)a,(a0,a1),求limxxn41ln[f(1)f(2)f(n)]
nn2
第三篇:极限连续-高数竞赛超好
高数竞赛例题
第一讲 函数、极限、连续
例1.例2.例3.例4.例5.例6.例7.例8.例9.lim1nn(1n2nn).lim135(2n1)246(2n)n
limx0x35x,其中[]为取整函数
lim1cosxx2x0
lim(cosnn)n2
lim(xxaxa)2x1e,求常数a.lim(sinx2xcos1x)x
lim[(nnn32n21)en1n]
6limln(13x)(e2x3x01)sinx2 例10.例11.例12.lim1tanx1sinx2x0xln(1x)x
limln(12)ln(1xx3x)
limsinxxcosxsinx3x0
例13.已知f(x)在x0的某邻域内有连续导数,且lim(sin2xx0f(x)xx)2,求 f(0),f(0).例14.例15.例16.lim(nnn12nn222nnn22)
2nsinsinsinnnnlimn11n1nn2n
xlim[xx1(axb)]0,求常数a,b.2例17.设f(x)nlim
x2n1axbxx2n21为连续函数,求a,b.例18.设f(x)在(,)上连续,且f(f(x))x,证明至少,使得f().....................................................................................................................极 限
例1.例2.nlim(n1nn122nn22nnnn2)
limnk1knk122
先两边夹,再用定积分定义 例3.例4.例5.设limx0 例6.例7.1x2lim(n1)nnn1nsin1n
limee2xsinx2x0x[ln(1xx)ln(1xx)]
ln(1)f(x)tanx5,求limx2x021xf(x).12(3sinttcos)dt0tlimxx0(1cosx)ln(1t)dtx0
xlimln(2e2xx1)xxsinx1
例8.例9.limexx0100
xlim(xxxx)
1例10.xxxlima1a2anx,其中,ax0.n1,a2,an均为正数
例11.已知2nf(x)limxe(1x)nxene(1x)nx2n1,求0f(x)dx.例12.设10ab,求limanbnnn
例13.设f(x)在(,)内可导,且limf(x)ex,xlim的值.xclim[f(x)f(x1)],求cxxcx
例14.设f(x)在x0的某邻域内二阶可导,且f(0)0,x又已知)dtlim0f(tx0xsinx0,求,.例15.当x1时,lim(1x)(1x2)(1x4)n(1x2)n
例16.当x0时,求limxncosx2cosx4cos2n
例17.lim(11(11n22)(1132)n2)
例18.lim1nnnn(n1)(2n1)
limf(x)x0x0,连 续
例1.求f(x)lim
例2.设g(x)在x0的某邻域内连续,且lim1g(x2t)dt102x1f(x)2abcosx2xx0x0x01x1x2n的间断点,并判断其类型
ng(x)1xn0a,已知
在x0处连续,求a,b的值.例3.证方程ln实根.例4.f(x)在[a,b]上连续,且acdb,证:在(a,b)内至少存在xxe01cos2xdx在区间(0,)内有且仅有两个不同,使得pf(c)qf(d)(pq)f(),其中p,q为任意正常数.例5.设f(x)在(a,b)内连续,且x1,x2,,xn(a,b),试证:(a,b),使
例6.试证方程xasin且它不超过ba.例7.设f(x),g(x)在(,)上连续,且g(x)0,利用闭区间上连续函数的性质,证明存在一点[a,b],使abf()1n[f(x1)f(x2)f(xn)].xb,其中a0,b0,至少存在一个正根,并
f(x)g(x)dxf()g(x)dx
ab
第四篇:函数、极限和连续试题及答案
极限和连续试题(A卷)
1.选择题(正确答案可能不止一个)。(1)下列数列收敛的是()。A.xnn1n(1)n
B.xn1n(1)n
C.xnnsinD.xn2n(2)下列极限存在的有()。
A.lim1xsinx
B.xlimxsinx
C.lim11x02xD.limn2n21
(3)下列极限不正确的是()。
A.lim(x1)2
B.lim1x1x0x11 12C.lim4x2xx2
D.xlim0e(4)下列变量在给定的变化过程中,是无穷小量的有()。A.2x1(x0)
B.sinxx(x0)
2C.ex(x)
D.xx1(2sin1x)(x0)1(5)如果函数f(x)xsinx,x0;a,x0;在x0处连续,则a、b的值为(xsin1xb,x0.A.a0,b0
B.a1,b1 C.a1,b0
D.a0,b1 2.求下列极限:
(1)lim(x322x13x1);
(2)xlim2(3x2x5);
(3)lim1x(1x3);
(4)limx30x2x2x;
x28x2(5)limx3x3;
(6)lim16x4x4;
(7)limx21x2x12x2x1;
(8)lim;
x2x2。)(9)limx0cosx1x1;
(10)lim;
xxxx33x1x43x1(11)lim;
(12)lim;
x3x3xx5x4x3x33x19x33x1(13)lim;
(14)lim; 42xxxxx1x3.(15)limx03xsin2x,x023.设f(x)2x1,0x1,求limf(x),limf(x),limf(x),limf(x)。
1x0x3x1x3(x1)3,x124.证明:xsinx~x(x0)。
5.求下列函数的连续区间:
2x1,x1;(1)yln(3x)9x;
(2)y2
x1,x1.26.证明limx2x2不存在.x21xsin,x0;x7.设f(x)求f(x)在x0时的左极限,并说明它在x0时10x.sin,x右极限是否存在?
8.证明lim(n1n121n221nn2)存在并求极限值。
x21axb)0,求a、b的值。9.若lim(xx1
答案
1.(1)B;(2)BD;
(3)C;
(4)ACD ;(5)B.2.(1)-1;(2)3;(3)
21;(4);(5);(6)8;
36(7)21111;
(8);(9);(10)0;(11);(12); 323522(13)0;(14);(15)
1.9x123.limf(x)3, limf(x)不存在, limf(x)x1x03, limf(x)11.2x35.(1)[3,3);
(2)(,1)(1,).7.f(x)在x0时的左极限为0,在x0时右极限不存在。8.极限值为1.9.a1,b1.
第五篇:高等数学函数极限连续练习题及解析
数学任务——启动——习题
1一、选择题:
(1)函数yxarccosx1的定义域是()
2(A)x1;(B)3x1(C)3,1(D)xx1x3x
1(2)函数yxcosxsinx是()
(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇偶函数
(3)函数y1cos
2x的最小正周期是()
(A)2(B)
(4)与y(C)4(D)1 2x2等价的函数是()
(A)x;(B)x(C)x(D)23x
x11x0(5)fx,则limfx()x0x1x0
(A)-1(B)1(C)0(D)不存在二、填空题:
(1)若f1
t52t2,则ft_________,ft21__________.t
1(2)tsinx3,则______。______,66x
30,1,则fx2的定义域为______,fsinx的定义域为x(3)若fx的定义域为
______,fxaa0的定义域为___,fxafxaa0的定义域为______。
14x
2(4)lim。__________
12x1x2
(5)无穷小量皆以______为极限。
三、计算题
(1)证明函数y11sin在区间0,1上无界,但当x0时,这个函数不是无穷大。xx
(2)求下列极限(1)lim2x33x25
x7x34x21
(3)limtanxtan2x
x
(5)limex1
x
x0
(7)limxsinx1
x0x2arctanx
(2)lim1cos2x x0xsinx(4)lim12n3n1n n(6)limtanxsinxx0sin32x 1(8)limxex1x
(3)设fx
1xx0,求limfx。2x0x1x0
(4)证明数列2,22,222,的极限存在,并求出该极限。
f(x)2x3f(x)2,lim3, 求f(x)(5)设f(x)是多项式, 且lim2xx0xx
(6)证明方程xasinxb,其中a0,b0,至少有一个正根,并且它不超过ab。
x2axb2,求:a,b.(7).lim2x2xx2