第一篇:初中数学整式说课稿
初中数学整式课程的说课工作需要有相关的说课稿进行辅助。下面是小编推荐给大家的初中数学整式说课稿,希望大家有所收获。
初中数学整式说课稿【1】
一、教材分析
本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
二、说教学目标
1、知识目标
(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2、能力目标
(1)在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。
(2)在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、情感目标:①激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。②让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育。
4、教学重点、难点
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
三、说教法
根据本节教材内容和学生的实际水平,为更有效地突出重点、突破难点,按照学生的认识规律,遵循“教师为主导、学生为主体、训练为主线”的指导思想,我采用问题探究式教学模式,结合学生自主学习、小组合作探究、展示交流、探究发现法、多媒体辅助教学等方法,教学中精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,并适时运用多媒体演示,激发学生探索知识的欲望,以此来达到他们对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力。
四、说学法
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。
五、说教学过程
本节课设计了以下几个环节:
第一环节:情景引入
创设具体、生动的课堂教学情境,正是激励,唤醒和鼓舞学生的一种教学艺术。数学中的情境导入设计,既要挖掘其生活中的应用价值,又要注重数学的内在联系与本质,既能促使学生以探索者的身份想去发现问题,总结规律,又能调动学生学习的积极性,激发学生的求知欲。
本节课以给汶川捐款的这个具体生活情景为背景,有效的吸引学生的注意力,增强好奇心及求知欲。既从侧面教育了学生,又使学生体会到体会到分类思想,顺利的引入新课。
总之,不管创设什么样的数学情境,核心是蕴含其中的数学问题。教师不仅要善于将所要解决的问题设计在情境的问题中,为学生造成心理上的悬念。而且问题的创设不能偏离课本,它为学习新课而服务。这样才能调动学生学习的积极性,才能激发学生的求知欲,才能促使学生一开始进入创新思维状态中,以探索者的身份去发现问题,总结规律。更能提高我们的课堂效果,使数学课堂充满活力。
第二环节:目标解析
开始上课时,教师三言两语,或用投影显示,准确地揭示学习目标(注意不是教学目标)。课堂教学过程中只有有了明确、具体、切实可行的学习目标,学生才能有序、有方向的进行学习。科学制定学习目标可以有效提高课堂效率,因此在教育教学过程中学习目标是必不可少的。科学合理的目标可以使学生明确“学什么”、“怎么学”,要知道“怎样才能学好”,“ 学到什么程度”,并为课后评价学生“学的怎么样”提供依据。
所以,我制定本节课的学习目标是:
1、了解同类项的概念,会识别同类项;
2、了解合并同类项的法则,熟练进行合并同类项。
第三环节:出示核心问题
数学课堂中的问题是数学课堂的灵魂。数学课堂中问题设置的恰当与否,决定着课堂教学的成败。若教师能把数学内容进行加工,结合本节课的教学目标,教学重难点,提出适合学生认识水平的问题,便积极诱发学生的思维。
结合本节课的教学目标,重难点,设计核心问题有两个:一是什么叫同类项?二是掌握合并同类项的法则,并会合并同类项。
第四环节:自主学习
自主学习能培养学生主动发展的能力;能使学生形成良好的学习品质;能培养学生充分的自信心;能培养学生的创造意志力;能保护并激发学生的好奇心。
为了降低难度,在学生自主学习时,我以有趣问题为导向,使学生产生好奇并迫切解决问题的心理。组织学生在规定时间内完成学习任务,要求学生心静、脑动、自主分析、解决问题,并对疑点问题进行标注。这样才能把学生引入到有关情境中,充分发挥学生自主探求的思维活动。
所以,本节课第一个知识是同类项的概念,既是重点也是难点.为突出重点,突破难点,我设计了找朋友游戏,让学生观察给出的单项式,要求把你认为相同类型的式子归类,并说出分类依据。关键是这个分类依据,直击概念。这样让学生仔细观察、独立思考后,分组讨论,互相交流,然后每组派一名代表发言,概括这两组单项式的特征.教师倾听学生交流,在学生概括出上述几组单项式的特征之后,提出同类项的概念,紧接着进行强化训练,通过想一想,温馨提示,判断同类项,考考你,延伸拓展题来达到对概念的理解。
设计意图:学生直接参与到同类项概念产生的过程,不仅能够有效地促使学生理解同类项的含义,而且能使学生体验获得成功的喜悦,同时培养和提高学生归纳、抽象概括的能力.为巩固同类项的概念,我设计了一道判断题,由学生一个个单独完成,并简单阐述理由,让学生充分发表意见,关注每一个学生.通过这个活动加深对同类项概念的理解,为后面合并同类项打好基础.另外还设计一道开放性题目,让学生自己动手写出两组同类项,组内交流写出的项是否符合要求,教师深入学生中间,参与指导,帮助加深理解同类项的含义,扩展学生的思维空间,培养学生的抽象思维能力和发散思维能力.第六环节:小组合作探究学习
新课程强调,教学是教与学的交往、互动,生生之间、师生之间双方相互交流、相互沟通、相互启发、相互补充,在这个过程中教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。交往昭示着教学不是教师教、学生学的机械相加,传统的严格意义上的教师教和学生学,将不断让位于师生互教互学,彼此将形成一个真正的“学习共同体”。对学生而言,交往意味着人人参与,意味着主体性的凸显,个性的表现,创造性的解放。对教师而言,交往意味着上课不是传授知识,而是一起分享理解;上课不是单向的付出,而是生命活动、专业成长和自我实现的过程。交往还意味着教师角色定位的转换:教师有教学中的主角转向“平等中的首席”。从传统的知识传授者转向现代的学生发展的促进者。可以说,创设基于师生交往的互动、互惠的教学关系,是本次教学改革的一项重要内容,也就是我们所期待的课堂。
这个环节,主要针对核心问题进行小组讨论。在整个过程中,教师要保持缄默,给学生留出充足的时间思考、交流。教师在巡视的过程中,既要确保学生围绕核心问题思考、合作交流讨论,又要了解学生的讨论情况,便于点拨,也可以根据情况适时进行个别辅导。
本环节,先引导学生利用两种方法求长方形的面积,得出合并同类项的概念。再问学生这一运算过程像之前学过的乘法分配律的逆用吗?
设计意图:通过对熟悉的事物,让学生感受到数学就在身边,提高学生应用数学知识解决实际问题的能力,增强应用意识。
以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题合并同类项。分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。
然后,趁热打铁,出示课本例题1,能根据乘法分配律合并同类项。教师追问,如果每次这样是不是很麻烦,你能试着总结合并同类项的法则吗?学生小组讨论交流,得出法则。
然后进行课本例题2,学生扮演,善于利用错误资源来让学生加深理解。以设计意图:一道例题的训练为桥梁来得出合并同类项的一般步骤。通过具体的练习让学生初步掌握如何运用合并同类项法则。
接着用一道“看谁算得快”一题,让思路不同的两位同学板演,从中体会先化简再求值的简便性,达到学以致用的目的。
设计意图:在比较两种方法的过程中,体会合并同类项对运算的简化作用。
第七环节 :展示交流,教师点拨
经过充分的自学和讨论,学生对本节内容、重难点及重难点的解决方法有了进一步的认识和理解,并具备了一定的应用本节知识解决问题的能力,但对本节知识点的内涵、外延、本节知识与前后知识的联系及本节知识的进一步应用还不能达到本节的学习目标。这就需要教师对本节的重难点、本节知识点的内涵、外延、本节知识与前后知识的联系及本节知识的进一步应用,用精练的语言进行进一步的阐述和强调,使学生对本节知识形成清晰的网络,能熟练的应用本节知识解决有关问题。但是讲解不可过多,仅仅针对学生提出的普遍性的、教师认为比较重要的、应用比较广泛的问题进行讲析和强调。
第八环节:课堂小结
课堂教学是一门艺术,懂得适时课堂小结更是一门艺术。俗话说:编篓编筐,重在收口;描龙画凤,重在点睛。“收口”和“点睛”是小结的神圣使命,需要艺术创造。设计好的课堂小结可以使知识得以概括、深化;可以使整个课堂教学结构严谨,浑然一体,显示出课堂教学的和谐和完美;可以诱发学生积极思维,进行深入探究,从而余音缭绕,回味无穷。课堂小结不单可小结本课知识点,也可适时小结学法,也可由教师提出启发性的问题让学生自己小结,甚至也可把生生间的互评带到课堂小结中来。它的作用是不可低估的。本节课通过1.本节课所学习的主要内容2.本节课涉及的数学思想方法3.本节课你还有什么疑惑来达到对本课知识的总结和归纳。
设计意图:由学生总结本节课内容,逐步提高学生的归纳总结能力和语言表达能力。进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。
第九环节:目标检测
课堂检测是教师了解学生对本节课知识掌握情况的一个重要手段,它是教学效果的反馈,在教学中有着非常重要的作用。通过有针对性的练习,巩固所学,拓展知识,形成应用能力。
本环节主要是针对学生对本节内容的掌握程度进行检测反馈。学生在经过自学、置疑、解疑、教师点拨后作一套本节的检测题。做完后,教师或学生给出答案,并给予简单解析。教师对检测成绩做以简单的统计,了解本节课的学习效果。
检测题必须精心设计与安排,因为学生在做经过精心安排的检测题时,不仅在积极地掌握数学知识,而且能获得进行创造性思维的能力。要充分发挥检测题的功能,设计检测题时应由浅入深、难易适当、逐步提高、突出重点与关键、注意题型的搭配。在试题设计上,应将知识、素质、能力的考查统一起来,既有知识性、分析性题目,又有应用性、直觉形象性题目。提高创新性题型的比重和难度,少问“是什么”,多问“为什么”、“对某些问题,你以为如何”等,增强答案的发散性。
设计意图:进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。
第十环节:作业布置
为减轻学生的课业负担,从课本中调选了几道题.第一题是合并同类项,第二题求代数式的值,既能巩固同类项的概念,又可利用合并同类项的法则进行计算,起到巩固新课的目的.第三、四题是实际应用题,进一步培养学生运用所学知识解决实际问题的能力,增强运用数学意识.学生通过独立思考,完成课后作业,老师批改,做好批改记录,及时反馈学生学习的效果,便于进行课堂教学优化。
初中数学整式说课稿【2】
一、说教材
1、教材分析
本节课中要学习整式的加减运算,以西宁到拉萨路段为背景引入教学知识。根据路程、路程、速度、时间之间的数量关系,设计了几个问题。这些问题的解决需要学习合并同类项,去括号等概念和运算法则。本节课的内容是在学生已有的用字母表示数以及有理数运算的基础上展开的,整式的加减运算是学习下一章一元一次方程的直接基础,也是以后学习分式和根式运算,方程以及函数等知识的基础。
2、学情分析
在整式的加减运算中,让学生把整式计算与有理数计算进行类比,体会数式通性,既可以复习前面所学数的知识,又使得式的有关知识得以简化,在教学中,多设计小问题,引导学生由易到难,小组合作,探究、进行自主学习,培养他们对知识的探索精神。
二、教学目标
1、知识与技能:进一步熟练,合并同类项的方法,会进行简单的合并同类项。
2、过程与方法:通过类比有理数的运算,体会数式通性。
3、情感态度与价值观
把问题通过小组交流,合作探究,总结归纳;通过数与式运算的分析,培养学生自主学习良好习惯。
三、教学重难点
本节重难点是合并同类项法则的探究过程。
四、教学过程
1、复习:①同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
②合并同类项:把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、探究新知
①分析例2:⑴求多项式2x-5x+x+4x-3x-2的值,其中x=。
⑵求多项式3a+abc-c-3a+c的值,其中a=﹣1/6,b=2,c=﹣3.师生合作探究:一种方法是直接把x的值代入多项式计算;第二种是把多项式经过合并同类项,即化简后,再代入x的值计算,比较两种方法哪种简便?
解法1:把x=代入2x-5x+x+4x-3x-2得
2×﹙﹚-5×+﹙﹚+4×-3×﹙﹚-
2=2×-5×++4×-3×-2
=-2.5++2--2
=﹣2-
=﹣2.5解法2:2x-5x+x+4x-3x-2
=﹙2+1-3﹚x+﹙﹣5+4﹚x-2
=﹣x-2
当x=时,原式=﹣-2=﹣2.5
教师总结:通过两种解法的比较得出,先化简多项式,再把x的值代入化简后的整式进行计算简便。
⑵3a+abc-c-3a+c
=﹙3-3﹚a+abc+﹙﹣+﹚c
=abc
当a=﹣1/6,b=2,c=﹣3时
原式=abc=﹙﹣1/6﹚×2×﹙﹣3﹚=
12、练一练:求下列各式的值
⑴3a+2b-5a-b,其中a=﹣2,b=1;
⑵3x-4x+7-3x+2x+1,其中x=﹣
33、分析P65的例
3例3:
1、水库中水位第一天连续下降了a小时,每小时平均下降2m;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
2、某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
学生:小组合作探究
教师总结:
1、把下降水位变化量记为负,上升的水位变化量记为正,第一天水位的变化量为﹣2acm,第二天水位变化量为0.5acm。
两天水位变化量为﹣2a+0.5a=﹙﹣2+0.5﹚a=﹣1.5a﹙cm﹚
2、把进货的数量记为正,售出的数量记为负
进货后这个商店共有大米5x-3x+4x=﹙5-3+4﹚x=6x﹙kg﹚
四、小结:熟悉合并同类项的法则,要求多项式的值,必须将多项式适当化简后可以化简计算。
五、作业P70﹙
4、5﹚
第二篇:初中数学《整式》知识点总结
在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。下面是小编分享的初中数学《整式》知识点总结,欢迎大家阅读!
单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:
1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
第三篇:初中数学复习整式的乘除
专题01
整式的乘除
阅读与思考
指数运算律是整式乘除的基础,有以下5个公式:,,,.
学习指数运算律应注意:
1.运算律成立的条件;
2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;
3.运算律的正向运用、逆向运用、综合运用.
多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:
1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;
2.确定商式,竖式演算式,同类项上下对齐;
3.演算到余式为零或余式的次数小于除式的次数为止.
例题与求解
【例1】(1)若为不等式的解,则的最小正整数的值为
.
(“华罗庚杯”香港中学竞赛试题)
(2)已知,那么
.
(“华杯赛”试题)
(3)把展开后得,则
.
(“祖冲之杯”邀请赛试题)
(4)若则
.
(创新杯训练试题)
解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.
【例2】已知,则等于()
A.2
B.1
C.
D.
(“希望杯”邀请赛试题)
解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.
【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)
解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.
【例4】已知多项式,求的值.
解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.
【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.
解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.
【例6】已知多项式能被整除,求的值.
(北京市竞赛试题)
解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.
能力训练
A级
1.(1)
.
(福州市中考试题)
(2)若,则
.
(广东省竞赛试题)
2.若,则
.
3.满足的的最小正整数为
.
(武汉市选拔赛试题)
4.都是正数,且,则中,最大的一个是
.
(“英才杯”竞赛试题)
5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是
.
(长沙市中考试题)
6.已知,则的大小关系是()
A.
B.
C.
D.
7.已知,那么从小到大的顺序是()
A.
B.
C.
D.
(北京市“迎春杯”竞赛试题)
8.若,其中为整数,则与的数量关系为()
A.
B.
C.
D.
(江苏省竞赛试题)
9.已知则的关系是()
A.
B.
C.
D.
(河北省竞赛试题)
10.化简得()
A.
B.
C.
D.
11.已知,试求的值.
12.已知.试确定的值.
13.已知除以,其余数较被除所得的余数少2,求的值.
(香港中学竞赛试题)
B级
1.已知则=
.
2.(1)计算:=
.
(第16届“希望杯”邀请竞赛试题)
(2)如果,那么
.
(青少年数学周“宗沪杯”竞赛试题)
3.(1)与的大小关系是
(填“>”“<”“=”).
(2)与的大小关系是:
(填“>”“<”“=”).
4.如果则=
.
(“希望杯”邀请赛试题)
5.已知,则
.
(“五羊杯”竞赛试题)
6.已知均为不等于1的正数,且则的值为()
A.3
B.2
C.1
D.
(“CASIO杯”武汉市竞赛试题)
7.若,则的值是()
A.1
B.0
C.—1
D.2
8.如果有两个因式和,则()
A.7
B.8
C.15
D.21
(奥赛培训试题)
9.已知均为正数,又,则与的大小关系是()
A.
B.
C.
D.关系不确定
10.满足的整数有()个
A.1
B.2
C.3
D.4
11.设满足求的值.
12.若为整数,且,求的值.
(美国犹他州竞赛试题)
13.已知为有理数,且多项式能够被整除.
(1)求的值;
(2)求的值;
(3)若为整数,且.试比较的大小.
(四川省竞赛试题)
第四篇:初中数学说课稿
初中数学说课稿模板
各位评委,大家好!今天我说课的题目是___,所选用的教材为人民教育出版社义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析
1、教材的地位和作用
本节教材是初中数学___年级第___章第___节的内容,是初中数学的重要内容之一。一方面,这是在学习了___的基础上,对___的进一步深入和拓展;另一方面,又为学习___等知识奠定了基础,是进一步研究___的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了,对___已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、教学目标分析
新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:
1.(了解、理解、熟记、初步掌握、会运用 对 进行 等);
2.通过___的学习,培养学生 观察分析、类比归纳的探究___能力,加深对___函数与防城、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。
3.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习就知,温故知新
设计意图:建构注意主张教学应从学生已有的知识体系出发,___是本节课深入研究___的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3)发现问题,探求新知
设计意图:现代数学教学论指出,___的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其 内涵和外延(条件、结论、应用范围等),通过对___定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。
(5)强化训练,巩固双基 设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1„„例2„„,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识; ② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?(7)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
案例:初中数学说课稿《一次函数与一元一次不等式》
教材分析
1、地位和作用
这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。
②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
五、教学过程设计
一、复习回顾
1.一次函数的定义。2.一次函数的图象。
3.直线y=kx+b与方程的联系。
那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。
教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。设计意图:回顾所学知识作好新知识的衔接。
二、导探激励
问题1:作出函数y=2x-5的图象,观察图象回答下列问题:(1)x取何值时,2x-5=0?(2)x取哪些值时, 2x-5>0?(3)x取哪些值时, 2x-5<0?(4)x取哪些值时, 2x-5>3? 教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。
设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。
学生可以用不同方法解答,教师意图是尽量用图象求解。问题2:用画函数图象的方法解不等式:-2x+3<3x-7.分析:
由一次函数与一元一次不等式的关系可先将其化为一般形式,再画图求解;也可以将-2x+3与3x-7看作是两个
关于x的一次函数,即y1=-2x+3,y2=3x-7。
于是不等式的解集即对应着y1 原不等式化为5x-10>0,画出直线y=5x-10如图所示,可以看出x>2时这条直线上的点在x轴上方,即这时y=5x-10>0,所以不等式的解集为x>2.解法2: 将原不等式的两边分别看作是两个一次函数,画出直线l1︰y=-2x+3,y2=3x-7,如图所示,可以看出它们的交点的横坐标为2,当x>2时,对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2.三、达测深化 做一做: 兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题: (1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面?(3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m?(5)你是怎样求解的?与同伴交流。 教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。 设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。 四、小结 通过本节课的学习,你有哪些收获? 五、作业 P19 读一读 P20 习题1.6 说课稿与教案的区别与联系 1.说课说什么?说课的内容一般说来有以下五个方面: ⑴说课标 说课标就是要把课程标准中的课程目标(三维目标)作为本课题教学的指导思想和教学依据,从课程论的高度驾驭教材和指导教学设计。 说课标,要重点说明有关课题教学目标、教学内容及教学操作等在课程标准中的原则性要求,从而为自己的教学设计寻找到用力的依据。 说课标,可以结合到说教材中去进行。⑵说教材 教材是课程的载体。能否准确而深刻地理解教材,高屋建瓴地驾驭教材,合乎实际地处理教材,科学合理地组织教材,是备好课、上好课的前提,也是说课的首要环节。 说教材的要求有: ①说清楚本节教材在本单元甚至本册教材中的地位和作用,即弄清教材的编排意图或知识结构体系。 ②说明如何依据教材内容(并结合课程标准和学生)来确定本节课的教学目标或任务。课时目标是课时备课时所规划的课时结束时要实现的教学结果。课时目标越明确、越具体,反映教者的备课认识越充分,教法的设计安排越合理。分析教学目标要从知识与技能、过程与方法、情感态度与价值观三个方面加以说明。 ③说明如何精选教材内容,并合理地扩展或加深教材内容,通过一定的加工将其转化为教学内容,即搞清各个知识点及其相互之间的联系。 ④说明如何确定教学重点和教学难点。 ⑤说明教材处理上值得注意和探讨的问题。⑶说学法 现代教育对受教育者的要求,不仅是学到了什么,更主要的是学会怎样学习。实施课程标准后,要求教师转换角色,基于这一转变,说课者就必须说明如何根据教学内容、围绕教学目标指导学生学习,教给学生什么样的学习方法,培养学生哪些能力,如何调动学生积极思维,怎样激发学生学习兴趣等。说课活动中虽然没有学生,看不到师生之间和学生之间的多边活动,但从教师的说课过程中要体现以学生为主体,充分发挥学生在学习活动中的作用、调动学生的学习积极性。在最大程度上体现课改精神——教师是课堂教学的组织者、引导者、参与者、启发者。具体要说清两大问题: ①针对本节教材特点及教学目的,学生宜采用怎样的学习方法来学习它,这种学法的特点怎样?如何在课堂上操作? ②在本节课中,教师要做怎样的学法指导?怎样使学生在学会过程中达到会学?怎样在教学过程中恰倒好处地融进学法指导? ⑷说教法 说教法,应说出“怎么教”的办法以及“为什么这样教”的根据,具体要做到以下几个方面: ①要说出本节课所采用的最基本或最主要的教法及其所依据的教学原理或原则。②要说出本节课所选择的一组教学方法、手段,对它们的优化组合及其依据。无论以哪种教法为主,都是结合学校的设备条件以及教师本人的特长而定的。要注意实效,不要生搬硬套某一种教学方法,要注意多种方法的有机结合,提倡教学方法的百花齐放。 ③要说明教师的教法与学生应采用的学法之间的联系。④要重点说说如何突出重点、化解难点的方法。⑸说教程 教程即教学过程,说教学过程是说课的重点部分,因为通过这一过程的分析才能看到说课者独具匠心的教学安排,它反映着教师的教学思想,教学个性与风格。也只有通过对教学过程设计的阐述,才能看到其教学安排是否合理、科学,是否具有艺术性。说教程要求做到: ①说出教学全程的总体结构设计,即起始——过程——收束的内容安排。说教学程序要把教学过程所设计的基本环节说清楚。但具体内容只须概括介绍,只要听讲人能听清楚“教的是什么”、“怎样教的”就行了。不能按教案像给学生上课那样讲。 另外注意一点是,在介绍教学过程时不仅要讲教学内容的安排,还要讲清“为什么这样教”的理论依据(包括大纲依据、课程标准依据、教学法依据、教育学和心理学依据等)。 ②重点说明教材展开的逻辑顺序、主要环节、过渡衔接及时间安排。 ③说明如何针对课型特点及教学法要求,在不同教学阶段师与生、教与学、讲与练是怎样协调统一的。 ④要对教学过程作出动态性预测,考虑到可能发生的变化及其调整对策。 以上五个方面,只是为说课内容提供一个大致的范围,并不意味着具体说课时都要面面俱到,逐项说来,应该突出重点,抓住关键,以便在有限是时间内进行有效的陈述,该展开的内容充分地展开,该说透的道理尽量去说透,这样才能取得良好的效果。 2.对说课的要求 要说好课,应该注意以下几个问题: ①突出“说”字 说课不等于备课,不能照教案读;说课不等于讲课,不能视听课对象为学生去说;说课不等于背课,不能按教案只字不漏地背;说课不等于读课,不能拿事先写好的说课稿去读。说课时,要抓住一节课的基本环节去说,说思路、说方法、说过程、说内容、说学生,紧紧围绕一个“说”字,突出说课特点,完成说课进程。 ②把握“说”的方法 说课的方法很多,应该因人制宜,因教材施说:可以说物、说理、说实验、说演变、说本质、说事实、说规律、正面说、反面说,但一定要沿着教学法思路这一主线说,以防跑野马。 ③语气得体、简练准确 说课时,不但要精神饱满,而且要充满激情。要使听课者首先从表象上感受到说课者对说好课的自信和能力,从而感染听者,引起听者的共鸣。 说课的语言应具有较强的针对性——教师同行.语言表达应十分简练干脆,避免拘谨,力求有声有色,灵活多变.前后整体要连贯紧凑,过渡要流畅自然。 ④说出特点、说出风格 说课的对象不是学生,而是教师同行。所以说课时不宜把每个过程说得过于详细,应重点说出如何实施教学过程、如何引导学生理解概念、掌握规律的方法,说出培养学生学习能力与提高教学效果的途径。说课要重理性,讲课注重感性和实践,因此,用极有限的时间完成说课内容不容易,必须做到详略得当、简繁适宜、准确把握说度。说得太详太繁,时间不允许,也没必要;说得过略过简,说不出基本内容,听众无法接受。 那么,如何把握说度呢?最主要的一点是因地制宜,灵活选取择说法,把课说活,说出该课的特色,把课说得有条有理、有理有法、有法有效,说得生动有趣;其次是发挥个人的特长,说出个人的风格,这就把握了说课的度。 初中数学说课稿-《数轴》 各位领导、各位教师: 大家好! 今天我说课的题目是“数轴” 我用的教材是鲁教版六年级上册教科书。 下面我将从教材分析、教学目标、教学方法、教学过程、最后综述等五个方面向大家介绍我对本节课的理解与设计,不妥之处,敬请指教。一:教材分析: 《数轴》是鲁教版六年级上册第二章第二节的内容。在此之前我们已经学习了有理数,这为本节课的学习起着铺垫的作用。1 教材的地位与作用 本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。教学重点和难点 重点: 正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点。难点:建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。3 学情分析 ⑴知识掌握上,六年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。 ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。 ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。 ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。二:教学目标: 根据新课标的要求及六年级学生的认知水平我特制定的本节课的教学目标如下: 知识与技能: 使学生理解数轴的三要素,会画数轴。 过程与方法: 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示 情感态度与价值观: 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。 三:教学方法: 依据本节重点,我主要采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,学生采取自主式、合作式、探讨式的学习方法。教学 中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。 在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,学生能较快的找到解决疑问的方法,找到解决问题的关键。本节课我为了体现学生为主体性和教师的主导辅助作用,启发式、合作式、探究式的原则始终贯穿于整个教学过程。具体设计如下: 教学过程中设计了温故知新,激发情趣 得出定义,揭示内涵 手脑并用,深入理解 启发诱导,初步运用 反馈矫正,注重参与 归纳小结,强化思想 布置作业,引导预习七个教学环节: 三 教学设计: (一)、温故知新,激发情趣: 首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问: (1)零上5°C用 5 表示。 (2)零下15°C 用-15 表示。 (3)0°C 用 0 表示。 然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。 (二)、得出定义,揭示内涵: 教师设问:到底什么是数轴?如何画数轴呢? (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。) (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。) (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。) 由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。 画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师的亲切的语言启发学生,以培养师生间的默契) 通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。 (三)、手脑并用,深入理解: 1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么? A、B、C、D、E、F、A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。 2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上) 学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。 我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。 (四)、启发诱导,初步运用: 有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。 安排课本23页的例1,利用黑板上的例题图形让学生来操作,教师提出要求: 1、要把点标在线上 2、要把数标在点的上方 通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。 当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。 (五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成: 1、课本23页练习1、2 2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论: 3、数轴上的点P与表示有理数3的点A距离是2,(1)试确定点P表示的有理数; (2)将A向右移动2个单位到B点,点B表示的有理数是多少? (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少? 先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结: 1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数? 2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。 (七)、布置作业,引导预习: 为面向全体学生,安排如下: 1、全体学生必做课本25页1、2、3 2、最后布置一个思考题: 与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何? (来引导学生养成预习的学习习惯) 七:板书设计:(略) 总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。 以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢第五篇:初中数学说课稿